Math, asked by sujavishwaa1, 7 months ago

A,B,C are points on OP, OQ,and OR respectively such that AB PARALLEL TO PQ,AC PARALLEL TO PR. Then prove that BC PARALLEL TO QR​

Answers

Answered by priyanshu99yadav
0

Answer:

divivogogkvoho pylvoig

Answered by Anonymous
0

Answer:

ANSWER</p><p></p><p>In △OPQ, we have</p><p></p><p>AB∥PQ</p><p></p><p>Therefore,  \: by \:  using  \: basic  \: proportionality  \: theorem , \:  we \:  have</p><p></p><p>APOA=BQOB.................(i)</p><p></p><p>IN △OPR, we have</p><p></p><p>AC∥PR</p><p></p><p>Therefore, \:  by using  \: basic  \: proportionality  \: theorem ,  \: we have</p><p></p><p>CROC=APOA.................(ii)</p><p></p><p>Comparing (i)&amp;(ii), we get</p><p></p><p>BQOB=CROC</p><p></p><p></p><p></p><p>

Therefore, by using converse of basic proportionality theorem, we get

BC∥QR

Similar questions