A,b,c are positive numbers such that a+b+ab= 8, b+c+bc=15 and c+a+ca = 35 What is the value of a+b+c+abc?
Answers
Answered by
2
HELLO DEAR,
GIVEN:-
a + b + ab = 8
b + a(1 + b) = 8
-------( 1 )
b + c + bc = 15
b + c(1 + b) = 15
------( 2 )
a + c + ac = 35
From----------( 1 ) &-----------( 2 )
so, b = 1 , b = -3[neglect]
because a , b , c ,are positive,
now,
from----------( 1 )
a = (8 - b)(1 + b)
a = (8 - 1)(1 + 1)
a = 7/2
from-----------( 2 )
c = (15 - b)(1 + b)
c = (15 - 1)(1 + 1)
c = 14/2
c = 7
thus, the value of "a + b + c + abc" is
7/2 + 1 + 7 + (7 * 7/2 * 1)
{(7 + 2 + 14 )/2 + 49/2}
(23/2 + 49/2)
(23 + 49)/2
72/2
36
HENCE, the value of (a + b + c + abc) = 36
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by
0
Given, a + b + ab = 8 ........(i)
b + c + bc = 15 ...........(ii)
c + a + ca = 35 ............(iii)
we have to find (a + b + c + abc) = ?
from equation (ii),
b + c + bc = 15
b + c(b + 1) = 15
c = (15 - b)/(b + 1)
put it in equation (iii),
(15 - b)/(b + 1) + a + (15 - b)a/(b+ 1) = 35
(15 - b) + a(b + 1) + (15 - b)a = 35(b + 1)
15 - b + ab + a + 15a - ab = 35b + 35
15 + a - b + 15a = 35b + 35
a - b + 15a - 35b = 35 - 15 = 20
16a - 36b = 20
4a - 9b = 5
4a = 5 + 9b
a = (5 + 9b)/4 ......(iv)
put equation (iv) in equation (i),
(5 + 9b)/4 + b + (5 + 9b)/4 × b = 8
(5 + 9b) + 4b + 5b + 9b² =8 × 4
18b + 9b² + 5 = 32
9b² + 18b - 27= 0
b² + 2b - 3 = 0
(b + 3)(b - 1) = 0.
b = -3 and 1 but a, b , c are positive numbers
so, b = 1
put equation (iv), a = (5 + 9)/4 = 7/2
c = (15 - b)/(b + 1) = (15 - 1)/(1 + 1) = 7
now, a + b + c + abc = 7/2 + 1 + 7 + 7/2 × 1 × 7
= 7/2 + 8 + 49/2
= 56/2 + 8
=28 + 8 = 36
hence, answer is 36
b + c + bc = 15 ...........(ii)
c + a + ca = 35 ............(iii)
we have to find (a + b + c + abc) = ?
from equation (ii),
b + c + bc = 15
b + c(b + 1) = 15
c = (15 - b)/(b + 1)
put it in equation (iii),
(15 - b)/(b + 1) + a + (15 - b)a/(b+ 1) = 35
(15 - b) + a(b + 1) + (15 - b)a = 35(b + 1)
15 - b + ab + a + 15a - ab = 35b + 35
15 + a - b + 15a = 35b + 35
a - b + 15a - 35b = 35 - 15 = 20
16a - 36b = 20
4a - 9b = 5
4a = 5 + 9b
a = (5 + 9b)/4 ......(iv)
put equation (iv) in equation (i),
(5 + 9b)/4 + b + (5 + 9b)/4 × b = 8
(5 + 9b) + 4b + 5b + 9b² =8 × 4
18b + 9b² + 5 = 32
9b² + 18b - 27= 0
b² + 2b - 3 = 0
(b + 3)(b - 1) = 0.
b = -3 and 1 but a, b , c are positive numbers
so, b = 1
put equation (iv), a = (5 + 9)/4 = 7/2
c = (15 - b)/(b + 1) = (15 - 1)/(1 + 1) = 7
now, a + b + c + abc = 7/2 + 1 + 7 + 7/2 × 1 × 7
= 7/2 + 8 + 49/2
= 56/2 + 8
=28 + 8 = 36
hence, answer is 36
Similar questions