a,b,c are positive real numbers such that a² + b² = c² and ab = c. Determine the value of
|(a+b+c)(a+b-c)(b+c-a)(c+a-b)|
-------------------------------------------
c²
Answers
Step-by-step explanation:
We know 2(ab+ac+bc)=(a+b+c)
2
−a
2
−b
2
−c
2
2(ab+ac+bc)=(a+b+c)
2
−1
(ab+bc+ac)=
2
(a+b+c)
2
−1
Now if a=b=c=
3
1
, then the above expression attains maximum value of 1.
Hence for distinct values of a,b and c,
2
(a+b+c)
2
−1
<1
Hence, ab+bc+ac<1
Correct Question:
a,b,c are positive real numbers such that a²+b²=c² and ab=c. Determine the value of |(a+b+c)(a+b-c)(b+c-a)(c+a-b)/c²|
Step by step Answer:
Given:
a²+b²=c²
ab=c
To find:
|(a+b+c)(a+b-c)(b+c-a)(c+a-b)/c²|
First part:
(a+b+c)(a+b-c)
=[(a+b)+c][(a+b)-c]
=(a+b)²-c²
=a²+2ab+b²-c²
Second part:
(b+c-a)(c+a-b)
=bc + ab - b² + c²+ ac - bc - ac - a² + ab
=2ab-b²+c²-a²
Third part:
(a²+2ab+b²-c²)(2ab-b²+c²-a²)/c²
=(a²+b²+2ab-c²)(-a²-b²+2ab+c²)/c²
=(c²+2c-c²)(-c²+2c+c²)/c² [as a²+b²=c² and ab=c]
=2c×2c/c²
=4c²/c²
=4
Final answer:
| 4 | = 4