A, B, C are the angles of a triangle. Prove sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
Answers
Answered by
3
Answer:
Step-by-step explanation:
sin 2 A+sin 2 B + sin 2 C = 2 sin (A+B) cos (A−B) + 2 sin C cos C
=2 sin C (cos( A−B ) + cos C ), since sin (A+B) = sin { 180 - (A + B)} = sin C
=4 sin C cos 1/2 (A+C−B )cos 1/2 (A−B−C)
=4 sin C cos 1/2 ([180−B]−B) cos 1/ 2 (A−[180−A] )
=4 sin C cos (90−B )cos (A−90)
=4 sin C cos (90−B )cos (90−A)
=4 sin A sin Bsin C
Proved
Similar questions