Math, asked by pkbanik94, 1 year ago

a/(b+c) + b/(c+a) + c/(a+b) =1 then prove that a^2/(b+c) + b^2/(c+a) + c^2/(a+b) =0

Attachments:

Answers

Answered by Noah11
14
\large{\boxed{\bold{Answer:}}}


Multiplying both the sides with a + b + c the result will be ( a + b + c is not equal to zero)

 =  >  \frac{a(a + b + c)}{b + c}  +  \frac{b(a + b + c)}{c + a}  +  \frac{c(a + b + c)}{a + b}  = (a + b + c) \\  \\  =  \frac{ {a}^{2} }{b + c}  +  \frac{a(b + c)}{b + c}  +  \frac{ {b}^{2} }{c + a}  +  \frac{b(c + a)}{c + a}  +  \frac{ {c}^{2} }{a + b}  +  \frac{c(a + b)}{a + b}  = (a + b + c) \\  \\  =  \frac{ {a}^{2} }{b + c}  + a +  \frac{ {b}^{2} }{c + a} + b + \frac{ {c}^{2} }{a + b}  + c = (a + b + c) \\  \\  =  \frac{ {a}^{2} }{b + c}  +  \frac{ {b}^{2} }{c + a} +  \frac{ {c}^{2} }{a + b}   = 0

Hence proved,


\large{\boxed{\bold{Hope\:it\:helps\:you!}}}
Answered by shravan221
4
take a/(b+c) +b/(c+a) +c/(a+b) =1

 

then multiply (a+b+c)  in both the sides

a(a+b+c) / (b+c) + b(a+b+c) / (a+c) + c(a+b+c) / (b+a) = a+b+c

 

a2 / (b+c)  + a(b+c)/ (b+c)  + b2 / (c+a) + b(c+a)/ (c+a)  +  c2 / (a+b)  + c(a+b)/ (a+b) = a+b+c

 

a2 / (b+c)  + a + b2 / (c+a) + b  +  c2 / (a+b)  + c = a+b+c

 

a2 / (b+c)  + b2 / (c+a) +  c2 / (a+b)  = 0

 

Hence Proved

 

Similar questions