a/(b+c) + b/(c+a) + c/(a+b) =1 then prove that a^2/(b+c) + b^2/(c+a) + c^2/(a+b) =0
Attachments:
Answers
Answered by
14
Multiplying both the sides with a + b + c the result will be ( a + b + c is not equal to zero)
Hence proved,
Answered by
4
take a/(b+c) +b/(c+a) +c/(a+b) =1
then multiply (a+b+c) in both the sides
a(a+b+c) / (b+c) + b(a+b+c) / (a+c) + c(a+b+c) / (b+a) = a+b+c
a2 / (b+c) + a(b+c)/ (b+c) + b2 / (c+a) + b(c+a)/ (c+a) + c2 / (a+b) + c(a+b)/ (a+b) = a+b+c
a2 / (b+c) + a + b2 / (c+a) + b + c2 / (a+b) + c = a+b+c
a2 / (b+c) + b2 / (c+a) + c2 / (a+b) = 0
Hence Proved
then multiply (a+b+c) in both the sides
a(a+b+c) / (b+c) + b(a+b+c) / (a+c) + c(a+b+c) / (b+a) = a+b+c
a2 / (b+c) + a(b+c)/ (b+c) + b2 / (c+a) + b(c+a)/ (c+a) + c2 / (a+b) + c(a+b)/ (a+b) = a+b+c
a2 / (b+c) + a + b2 / (c+a) + b + c2 / (a+b) + c = a+b+c
a2 / (b+c) + b2 / (c+a) + c2 / (a+b) = 0
Hence Proved
Similar questions