Math, asked by barunkarmakar606, 11 months ago

(a+b+c)(b+c-a) (c+a-b) (a+b-c)​

Answers

Answered by ᏕɱartYᎶᴜʀɭ
0

Step-by-step explanation:

"(a+b+c) (b+c-a) (c+a-b) (a+b-c)

Several use of number property arrangements allows the advantage of Difference of Two Squares.

(a+b+c) (-a+b+c) (a-b+c) (a+b-c)

(a+b+c) ( a+b-c) (-a+b+c) (a-b+c)

( (a+b)+c) ( (a+b)-c) (-1)* ( (a-b)-c) ( (a-b)+c)

( (a+b)^2-c^2)  (-1)* ( (a-b)^2-c^2)

(a^2+2ab+b^2-c^2) (-1) *(a^2-b^2-c^2)

(-1) * (a^2+2ab+b^2-c^2) (a^2-2ab +b^2-c^2)

(-1) * (a^2+b^2+2ab-c^2) (a^2+b^2-2ab-c^2)

(-1) * (a^4+a^2b^2+a^2b^2+b^4-a^2c^2-a^2c^2_4a^2b^2+c^4)

(-1).(a^4+b^4+c^4-2a^2b^2-2a^2c^2) "

Similar questions