Math, asked by sanket73, 1 year ago

(a+b+c+d):(a+b-c-d)=(a-b+c-d):(a-b-c+d) so prove a:b=c:d

Answers

Answered by aravya
57
consider this friend
Attachments:
Answered by guptasingh4564
26

Hence Proved.

Step-by-step explanation:

Given,

(a+b+c+d):(a+b-c-d)=(a-b+c-d):(a-b-c+d) then a:b=c:d

\frac{(a+b+c+d)}{(a+b-c-d)} =\frac{(a-b+c-d)}{(a-b-c+d)}

(a+b+c+d).(a-b-c+d)=(a+b-c-d).(a-b+c-d)

a^{2} -ab-ac+ad+ab-b^{2} -bc+bd+ac-bc-c^{2} +cd+ad-bd-cd+d^{2} =a^{2}-ab+ac-ad+ab-b^{2}+ac-bd-ac+bc-c^{2} +cd-ad+bd-cd+d^{2}(By multiple fraction)

Calculating above equation,

ad-bc-bc+ad=-ad+bc+bc-ad

2ad-2bc=2bc-2ad

4ad=4bc

ad=bc

\frac{a}{b}=\frac{c}{d}

a:b=c:d

Hence Proved.

Similar questions