Math, asked by yashpatel9796, 8 months ago

a, b, c, d, e are in A.P., then the value of a – 4b + 6c – 4d + e is​

Answers

Answered by pulakmath007
5

\huge{\mathcal{\underline{\green{SOLUTION}}}}

Let k be the Common Difference

Since a, b, c, d, e are in AP

SO

b = a+k

c = a+2k

d = a+3k

e = a+4k

Now

 \displaystyle \: a – 4b + 6c – 4d + e

 =  \displaystyle \: a – 4(a +k ) + 6(a + 2k) – 4( a+3k )+ ( a+4k )

  =  \displaystyle \: a – 4 a-  4k + 6a   + 12k  -  4a-  12k + a + 4k

 = 0

\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}

Answered by hipsterizedoll410
6

Answer: 0.

Given:

\sf a,b,c,d\:and\:e\:are\:in\:A.P.

To find:

\sf The\:value\:of\:a-4b+6c-4d+e.

Formula used:

\boxed{\sf a_n=a+(n-1)d}

Explanation:

\sf Let\:A\:be\:the\:first\:term.\:Also, D\:be\:the\:common\:difference.

\sf\therefore a=A

   \sf\ b=A+D

   \sf c=A+2D

   \sf d=A+3D

   \sf e=A+4D

\sf Substituting\:the\:values\:of\:a,b,c,d\:and\:in\:the\:question,we\:get:

\Rightarrow\sf A-4(A+D)+6(A+2D)-4(A+3D)+(A+4D)

\Rightarrow\sf A-(4A+4D)+(6A+12D)-(4A+12D)+(A+4D)

\Rightarrow\sf A-4A-4D+6A+12D-4A-12D+A+4D

\Rightarrow\sf A-4A+6A-4A+A-4D+12D-12D+4D  

\sf\Rightarrow \boxed{\sf 0}

Hence, value of a – 4b + 6c – 4d + e is​ 0.

Similar questions