Math, asked by ayazkhan6034, 1 year ago

a/b=c/d=e/f to solve bdf[a+b/b + c+d/d + e+f/f] ³

Answers

Answered by ravisanplapcjwiv
25
I hope you will be able to get the answer
Attachments:
Answered by guptasingh4564
17

∴ The value is 27bdf[\frac{a}{b} +1]^{3}

Step-by-step explanation:

Given;

\frac{a}{b}=\frac{c}{d}=\frac{e}{f} then bdf[\frac{a+b}{b}  +\frac{c+d}{d}  + \frac{e+f}{f} ]^{3}=?

Let,

\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=k

Then, a=bk , c=dk and e=fk

bdf[\frac{a+b}{b}  +\frac{c+d}{d}  + \frac{e+f}{f} ]^{3}

Plug all value in above equation;

=bdf[\frac{bk+b}{b}  +\frac{dk+d}{d}  + \frac{fk+f}{f} ]^{3}

=bdf[\frac{b(k+1)}{b}  +\frac{d(k+1)}{d}  + \frac{f(k+1)}{f} ]^{3}

=bdf[(k+1)+(k+1)+(k+1)]^{3}

=bdf[3(k+1)]^{3}

=27bdf[k+1]^{3}

=27bdf[\frac{a}{b} +1]^{3}  (∵k=\frac{a}{b} )

∴ The value is 27bdf[\frac{a}{b} +1]^{3}

Similar questions