Math, asked by dipalikachari86, 4 months ago

A B C D is a quadrilateral . Prove that AB + BC + CD + DA > AC + BD.​

Answers

Answered by ItzcuteVihaanBoss
5

Answer:

Given that,

A point P is 25 cm away from the centre of a circle. Centre of the circle is O. And, the length drawn from point P to the circle is 24 cm. TP is 24 cm.

⠀⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{Using\;Circle\; Theorem\: :}}

†UsingCircleTheorem:

⠀⠀⠀⠀

⠀⠀⠀⠀

Tangent drawn from an external point (P) is perpendicular to the radius at the point of Contact, O.

Therefore, OT \perp⊥ PT.

\rule{250px}{.3ex}

⠀⠀⠀

\underline{\pink{\bigstar\:\sf{By\: Using\; Pythagoras\: Theorem\;In\;\triangle\;OTP\; :}}}

★ByUsingPythagorasTheoremIn△OTP:

⠀⠀

⠀⠀⠀⠀

\begin{gathered}:\implies\sf (OP)^2 = (OT)^2 + (PT)^2 \\\\\\:\implies\sf (OT)^2 = (OP)^2 - (PT)^2 \\\\\\:\implies\sf (OT)^2 = (25)^2 - (24)^2 \\\\\\:\implies\sf (OT)^2 = 625 - 576 \\\\\\:\implies\sf (OT)^2 = 49 \\\\\\:\implies\sf OT = \sqrt{49} \\\\\\:\implies\underline{\boxed{\frak{\pink{OT = 7\;cm}}}}\;\bigstar\end{gathered}

:⟹(OP)

2

=(OT)

2

+(PT)

2

:⟹(OT)

2

=(OP)

2

−(PT)

2

:⟹(OT)

2

=(25)

2

−(24)

2

:⟹(OT)

2

=625−576

:⟹(OT)

2

=49

:⟹OT=

49

:⟹

OT=7cm

⠀⠀⠀⠀

\therefore{\underline{\textsf{Hence, \; required\; radius\;of\;the\;circle\;is\;\textbf{7 cm}.}}}∴

Hence, requiredradiusofthecircleis7 cm.

Attachments:
Similar questions