a,b,c is a geometric progression (a,b,c are real numbers ). If a+b+c=26 and a^2+b^2+c^2=364. Find b.
Answers
Answered by
10
Answer:
Step-by-step explanation:
Pls mark me the brainliest
Attachments:
sommyugoh:
More explanation
Answered by
2
Answer:
b = 6
Step-by-step explanation:
Given data
a, b, c are in geometric progression and real numbers
a+b+c = 26 and a² + b² + c² = 364
here we need to find value of b
⇒ from given data a, b, c are Geometric progression
⇒ ⇒ b² = ca _ (1)
⇒ from algebraic identities we know that
(a+b+c)² = a² +b² +c² + 2 ab + 2 bc + 2 ca
⇒ (26)² = 364 + 2(ab + bc + ca)
⇒ 676 - 364 = 2 ( ab + bc + ca )
⇒ 2 (ab + bc + ca) = 312
⇒ ab + bc + b² = 312/2 [ from (1) ]
⇒ b ( a + b + c ) = 156 [ take b common ]
⇒ b (26) = 156 [ from given data]
⇒ b = 156/ 26 = 6
⇒ the value of b = 6
Similar questions