a + b + c ka whole square
Answers
Answered by
2
given :- (a + b + c)²
(a + b + c)² is one of the identity of algebraic expression.
expansion of (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac.
For example :-
given (2x + y + 3z)²
here we will use (a + b + c)² identity.
therefore (2x + y + 3z)² = (2x)² + (y)² + (3z)² + 2(2x)(y) + 2(y)(3z) + 2(2x)(3z)
= 4x² + y² + 9z² + 4xy + 6yz + 12xz
rafiqueahmad:
thank you
Answered by
4
(a+b+c) ^2
=(a+b+c) (a+b+c)
=a(a+b+c) +b(a+b+c) +c(a+b+c)
=a^2+ab+ac +ab+b^2+bc+ ac+bc+c^2
Associating like terms together
=a^2+b^2+c^2 +ab+ab +bc+bc+ ac+ac
=a^2+b^2+c^2+ 2ab +2bc +2ac
[^2 indicates raise to the power two]
=(a+b+c) (a+b+c)
=a(a+b+c) +b(a+b+c) +c(a+b+c)
=a^2+ab+ac +ab+b^2+bc+ ac+bc+c^2
Associating like terms together
=a^2+b^2+c^2 +ab+ab +bc+bc+ ac+ac
=a^2+b^2+c^2+ 2ab +2bc +2ac
[^2 indicates raise to the power two]
Similar questions