a+b+c=pi/2 then sigma cos(b+c)/cosbcosc=
Answers
Given : a + b + c = π/2
To find : ∑ Cos(b+c)/cosbCosc
Solution:
a + b + c = π/2
∑ Cos(b+c)/cosbCosc
= Cos(b+c)/cosbCosc + Cos(c+a)/coscCosa + Cos(a+b)/cosaCosb
Cos(b+c)/cosbCosc = (CosbCosc - SinbSinc)/cosbCosc = 1 - tanbtanc
Cos(c+a)/coscCosa = 1 - tanctana
Cos(a+b)/cosaCosb = 1 - tantanb
=> ∑ Cos(b+c)/cosbCosc = 1 - tanbtanc + 1 - tanctana + 1 - tantanb
=> ∑ Cos(b+c)/cosbCosc = 3 - (tanatanb + tanbtanc + tanctana)
a + b + c = π/2
=> a + b = π/2 - c
taking tan both Sides
=> tan (a + b ) = tan (π/2 - c)
=> (tana + tanb)/(1 - tanatanb) = Cotc
=> (tana + tanb)/(1 - tanatanb) = 1/tanc
=> tanatanc + tanbtanc = 1 - tantanb
=> tantanb + tanbtanc + tanctana = 1
=> ∑ Cos(b+c)/cosbCosc = 3 - (1)
=> ∑ Cos(b+c)/cosbCosc = 2
∑ Cos(b+c)/cosbCosc = 2
Learn more:
If A + B + C = \frac{\pi}{2} and if none of A, B, C is an odd multiple of \frac{\pi}{2}, then prove that
https://brainly.in/question/6964451
{cos^{2} A . cos^{2} B}
https://brainly.in/question/6964151
Answer:
that is require solution