A+B+C=pie then cos2A + cos2B+cos2c=?
Answers
Answer:
⇒
Step-by-step explanation:
Given :
A + B + C = π ,
To Find : The value of :
cos 2A + cos 2B + cos 2C,.
Solution :
cos 2A + cos 2B + cos 2C
⇒ cos 2A + (cos 2B + cos 2C)
We know that,
also,
So,
⇒
⇒
⇒
∵ A + B + C = π ⇒ B + C = π - A..
∵ cos (π - A) = - cos A..
So,
⇒
⇒
∵ cos (A) = cos [π - (B + C)] = - cos (B + C)
⇒
⇒
⇒
⇒
⇒
Answer:
Step-by-step explanation:
Given=a+b+c=pie
cos2a + cos2b + cos2c
= cos2a + [ cos(2b) + cos(2c) ]
= cos2a + 2*cos(b + c)*cos(b - c)
= (2cos²a - 1) + 2cos(180 - a)*cos(b - c)
= 2cos²(a) - 1 - 2cos(a)*cos(b - c)
= - 1 + 2cos(a) * [cos(a) - cos(b - c)]
= - 1 + 2cos(a) [ cos {180 - (b + c) } - cos(b - c) ]
= - 1 + 2cos(a) [ - cos (b + c) - cos(b - c) ]
= - 1 - 2cos(a) [ cos (b + c) - cos(b - c) ]
= - 1 - 2cos(a) [ 2*cos(b)*cos(c) ]
= - 1 - 4*cosa*cosb*cosc