Math, asked by dangerdevil999, 2 months ago

a, b, c ∈ R and a^2+b^2+c^2=ab+bc+ca then,

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:a, \: b, \: c \:  \in \: R

and

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} = ab + bc + ca

can be rewritten as

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} -  ab  -  bc  -  ca = 0

On multiply by 2 on both sides, we get

\rm :\longmapsto\: 2{a}^{2} +2{b}^{2} +  2{c}^{2} -  2ab  -  2bc  -  2ca = 0

\rm :\longmapsto\: {a}^{2} + {a}^{2}  +{b}^{2} +  {b}^{2} +  {c}^{2} + {c}^{2} -  2ab  -  2bc  -  2ca = 0

On rearranging the terms, we get

\rm :\longmapsto\:( {a}^{2} +  {b}^{2} - 2ab) + ( {b}^{2} +  {c}^{2} - 2bc) + ( {c}^{2} +  {a}^{2} - 2ac) = 0

\rm :\longmapsto\: {(a - b)}^{2} +  {(b - c)}^{2} +  {(c - a)}^{2} = 0

 \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  {x}^{2} +  {y}^{2} - 2xy = {(x - y)}^{2} \bigg \}}

We know, sum of squares is 0 only, when number itself is 0.

\rm :\implies\:a - b = 0 \:  \: and \:  \: b - c =0 \:  \: and \: c - a = 0

\bf\implies \:a = b = c

Hence,

\rm :\longmapsto\: If \: {a}^{2} +  {b}^{2} +  {c}^{2} = ab + bc + ca \: then \: a = b = c

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions