Math, asked by JannatulNayeem, 4 months ago

A+B+C=π হলে প্রমান কর যে,sin(B+C-A)+sin(C+A-B)+(A+B-C)=4sinA.sinB.sinC

Answers

Answered by Anonymous
13

Solution :

\bf{sin(B + C - A) + sin(C + A - B) + sin (A + B - C) = 4sinAsinBsinC} \\

From the above equation , we get :

  • LHS = \bf{sin(B + C - A) + sin(C + A - B) + sin (A + B - C)} \\

  • RHS = \bf{4sinAsinBsinC} \\

Given that ,

\bf{A + B + C = \pi}

From the above equation, we get :

:\implies \bf{B + C = \pi - A} \\ \\ \\ ⠀⠀⠀⠀⠀⠀⠀⠀⠀Eq.(i)

:\implies \bf{A + C = \pi - B}⠀⠀⠀⠀⠀⠀⠀⠀⠀Eq.(ii)

:\implies \bf{A + B = \pi - C}⠀⠀⠀⠀⠀⠀⠀⠀⠀Eq.(iii)

Now substituting them in the LHS of the equation , we get :

:\implies \bf{sin(B + C - A) + sin(C + A - B) + sin (A + B - C)} \\ \\ \\

:\implies \bf{sin(\pi - A - A) + sin(\pi - B - B) + sin(\pi - C - C)} \\ \\ \\

:\implies \bf{sin(\pi - 2A) + sin(\pi - 2B) + sin(\pi - 2C)} \\ \\ \\

\boxed{\begin{minipage}{8 cm}$\textsf{We know that :} \\ \\ :\implies \bf{sin(\pi - \theta) = sin\theta} \\ \\ \textbf{Now by using it in the equation , we get :}$\end{minipage}} \\ \\ \\

:\implies \bf{sin2A + sin2B + sin2C} \\ \\ \\

\boxed{\begin{minipage}{8 cm}$\textsf{We know that :} \\ \\ \bullet\quad :\implies \bf{sin2x + sin2y = 2sin(x + y)cos(x - y)} \\ \\  \bullet\quad :\implies \bf{sin2x = 2sinxcosx} \\ \\ \textbf{Now by using it in the equation , we get :}$\end{minipage}} \\ \\ \\

:\implies \bf{2sin(A + B)cos(A - B) + sin2C} \\ \\ \\

:\implies \bf{2sin(A + B)cos(A - B) + 2sinCcosC} \\ \\ \\

By taking 2sinC common in the equation , we get :

:\implies \bf{2sinC[2cos(A - B) + 2cosC)]} \\ \\ \\

\boxed{\begin{minipage}{8 cm}$\textsf{We know that :} \\ \\ \bullet\quad :\implies \bf{cosx + cosy = 2cos\bigg(\dfrac{x + y}{2}\bigg)cos\bigg(\dfrac{x - y}{2}\bigg)} \\ \\ \textbf{Now by using it in the equation , we get :}$\end{minipage}} \\ \\ \\

:\implies \bf{2sinC\bigg[2cos\bigg(\dfrac{A - B + C}{2}\bigg)cos\bigg(\dfrac{A - B - C}{2}\bigg)\bigg]} \\ \\ \\

:\implies \bf{2sinC\bigg[2cos\bigg(\dfrac{\pi - B - B}{2}\bigg)cos\bigg(\dfrac{A- (B + C)}{2}\bigg)\bigg]} \\ \\ \bf{[\because \bullet\:A + C = \pi - B \\ \\ \bullet\:B + C = \pi - A)]}\\ \\ \\

:\implies \bf{2sinC\bigg[2cos\bigg(\dfrac{\pi - 2B}{2}\bigg)cos\bigg(\dfrac{A- (\pi - A)}{2}\bigg)\bigg]} \\ \\ \\

:\implies \bf{2sinC\bigg[2cos\bigg(\dfrac{\pi - 2B}{2}\bigg)cos\bigg(\dfrac{A- \pi + A}{2}\bigg)\bigg]} \\ \\ \\

:\implies \bf{2sinC\bigg[2cos\bigg(\dfrac{\pi - 2B}{2}\bigg)cos\bigg(\dfrac{- \pi + 2A}{2}\bigg)\bigg]} \\ \\ \\

:\implies \bf{2sinC\bigg[2cos\bigg(\dfrac{\pi - 2B}{2}\bigg)cos\bigg(\dfrac{- (\pi - 2A)}{2}\bigg)\bigg]} \\ \\ \\

:\implies \bf{2sinC\bigg[2cos\bigg(\dfrac{\pi - 2B}{2}\bigg)cos\bigg\{-\bigg(\dfrac{\pi - 2A}{2}\bigg)\bigg\}\bigg]} \\ \\ \\

:\implies \bf{2sinC\bigg[2cos\bigg(\dfrac{\pi - 2B}{2}\bigg)cos\bigg(\dfrac{\pi - 2A}{2}\bigg)\bigg]} \quad \bf{\because cos(-x) = cosx}\\ \\ \\

:\implies \bf{2sinC\bigg[2cos\bigg(\dfrac{\pi}{2} - \dfrac{2B}{2}\bigg)cos\bigg(\dfrac{\pi}{2} - \dfrac{2A}{2}\bigg)\bigg]} \\ \\ \\

:\implies \bf{2sinC\bigg[2cos\bigg(\dfrac{\pi}{2} - \dfrac{\not{2}B}{\not{2}}\bigg)cos\bigg(\dfrac{\pi}{2} - \dfrac{\not{2}A}{\not{2}}\bigg)\bigg]} \\ \\ \\

:\implies \bf{2sinC\bigg[2cos\bigg(\dfrac{180^{\circ}}{2} - B\bigg)cos\bigg(\dfrac{180^{\circ}}{2} - A\bigg)\bigg]}\quad \bf{\because \pi = 180^{\circ}} \\ \\ \\

:\implies \bf{4sinCcos(90^{\circ} - Bcos)(90^{\circ} - A)} \\ \\ \\

:\implies \bf{4sinCsinBsinA} \\ \\ \\

\boxed{\therefore \bf{4sinAsinBsinC}} \\ \\ \\

Hence the LHS of the Equation is \bf{4sinCsinBsinA}

Now by putting the LHS and RHS together , we get :

:\implies \bf{4sinAsinBsinC = 4sinAsinBsinC} \\ \\ \\

\boxed{\therefore \bf{sin(B + C - A) + sin(C + A - B) + sin (A + B - C) = 4sinAsinBsinC}} \\

Hence LHS = RHS.

Proved !

Similar questions