Math, asked by rajibmondal64, 2 months ago

a/b+c
a \b + c + b \c + a + c \a + b = 1 then it prove  {?a}^{2}

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Given \:Question - }}

 \sf \: If \: \dfrac{a}{b + c}  + \dfrac{b}{c + a}  + \dfrac{c}{a + b}  = 1 \: then \: prove \: that \:

 \sf \: \dfrac{ {a}^{2} }{b + c}  + \dfrac{ {b}^{2} }{c + a}  + \dfrac{ {c}^{2} }{a + b}  = 0

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{a}{b + c}  + \dfrac{b}{c + a}  + \dfrac{c}{a + b}  = 1

Multiply both sides by (a + b + c), we get

\rm \: \dfrac{a(a + b + c)}{b + c}  + \dfrac{b(a + b + c)}{c + a}  + \dfrac{c(a + b + c)}{a + b}  = a + b + c

 \rm \: \dfrac{ {a}^{2}  + a(b + c)}{b + c}  + \dfrac{ {b}^{2}  + b(a + c)}{a + c}  + \dfrac{ {c}^{2}  + c(a + b)}{a + b}  = a + b + c

On splitting the terms, we get

 \rm \: \dfrac{ {a}^{2} }{b + c}  +  \cancel{a} + \dfrac{ {b}^{2} }{c + a}   +  \cancel{b}+ \dfrac{ {c}^{2} }{a + b}   +   \cancel{c}=  \cancel{a} +  \cancel{b} +  \cancel{c}

 \rm \: \dfrac{ {a}^{2} }{b + c}  + \dfrac{ {b}^{2} }{c + a}  + \dfrac{ {c}^{2} }{a + b}  = 0

{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions