( A-B) U A = A solve using properties of sets
Answers
Answer:
As we know thatA−B=A∩B
And also (A∩B) =A ′ ∪B ′ ,A∩(B∪C)=(A∩B)∪(A∩C)
And also (A∩B) =A ′ ∪B ′ ,A∩(B∪C)=(A∩B)∪(A∩C)A−(B∩C)=A∩(B∩C)
And also (A∩B) =A ′ ∪B ′ ,A∩(B∪C)=(A∩B)∪(A∩C)A−(B∩C)=A∩(B∩C) ′
And also (A∩B) =A ′ ∪B ′ ,A∩(B∪C)=(A∩B)∪(A∩C)A−(B∩C)=A∩(B∩C) ′ =A∩(B
And also (A∩B) =A ′ ∪B ′ ,A∩(B∪C)=(A∩B)∪(A∩C)A−(B∩C)=A∩(B∩C) ′ =A∩(B ′
And also (A∩B) =A ′ ∪B ′ ,A∩(B∪C)=(A∩B)∪(A∩C)A−(B∩C)=A∩(B∩C) ′ =A∩(B ′ ∪C
And also (A∩B) =A ′ ∪B ′ ,A∩(B∪C)=(A∩B)∪(A∩C)A−(B∩C)=A∩(B∩C) ′ =A∩(B ′ ∪C ′
And also (A∩B) =A ′ ∪B ′ ,A∩(B∪C)=(A∩B)∪(A∩C)A−(B∩C)=A∩(B∩C) ′ =A∩(B ′ ∪C ′ )=(A∩B
And also (A∩B) =A ′ ∪B ′ ,A∩(B∪C)=(A∩B)∪(A∩C)A−(B∩C)=A∩(B∩C) ′ =A∩(B ′ ∪C ′ )=(A∩B ′
And also (A∩B) =A ′ ∪B ′ ,A∩(B∪C)=(A∩B)∪(A∩C)A−(B∩C)=A∩(B∩C) ′ =A∩(B ′ ∪C ′ )=(A∩B ′ )∪(A∩C
And also (A∩B) =A ′ ∪B ′ ,A∩(B∪C)=(A∩B)∪(A∩C)A−(B∩C)=A∩(B∩C) ′ =A∩(B ′ ∪C ′ )=(A∩B ′ )∪(A∩C ′
And also (A∩B) =A ′ ∪B ′ ,A∩(B∪C)=(A∩B)∪(A∩C)A−(B∩C)=A∩(B∩C) ′ =A∩(B ′ ∪C ′ )=(A∩B ′ )∪(A∩C ′ )=(A−B)∪(A−C)