a + b whole cube minus a minus b whole cube
Answers
=(a^3 + 3 a^2 *b + 3 a *b^2 + b^3) -
(a^3 - 3 a^2*b + 3 a * b^2 - b^3)
=6 * a^2* b + 2 * b ^3
= 2*b *(b^2 + 3* a^2).
(a + b)³ - (a - b)³ = 2b(3a² + b²)
Correct question : Simplify the expression (a + b)³ - (a - b)³
Given :
The expression (a + b)³ - (a - b)³
To find :
Simplify the given expression
Identity Used :
- (a + b)³ = a³ + 3a²b + 3ab² + b³
- (a - b)³ = a³ - 3a²b + 3ab² - b³
Solution :
Step 1 of 2 :
Write down the given expression
Here the given expression is
(a + b)³ - (a - b)³
Step 2 of 2 :
Simplify the given expression
We know that ,
(a + b)³ = a³ + 3a²b + 3ab² + b³
(a - b)³ = a³ - 3a²b + 3ab² - b³
Thus we get
(a + b)³ - (a - b)³
= (a³ + 3a²b + 3ab² + b³) - (a³ - 3a²b + 3ab² - b³)
= a³ + 3a²b + 3ab² + b³ - a³ + 3a²b - 3ab² + b³
= 6a²b + 2b³
= 2b(3a² + b²)
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
Find the value of the expression a² – 2ab + b² for a = 1, b = 1
https://brainly.in/question/28961155
2. to verify algebraic identity a2-b2=(a+b)(a-b)
https://brainly.in/question/10726280
#SPJ3