(a-b)x^2 + (b-c)x + (c-a)
Answers
How to solve your problem
(−)⋅2+(−)+(−)
Simplify
1. Distribute
(−)⋅2+(−)+(−)
2−⋅2+(−)+(−)
2. Distribute
2−⋅2+(−)⋅+(−)
2−⋅2++(−)+(−)
3. Re-order terms so that constants are on the left
2−⋅2++(−)+(−)
2−⋅2+−+(−)
4. Rearrange terms
2−⋅2+−⋅+(−)
2−⋅2+−⋅+(−+)
5 Eliminate redundant parentheses
2−⋅2+−⋅+(−+)
Solution
2−⋅2+−⋅−+
From the given question the correct answer is:
(a-b)x² + (b-c)x + (c-a)=b + c = 2a
Given:
(a-b)x² + (b-c)x + (c-a)
To find:
(a-b)x² + (b-c)x + (c-a)=?
Solution:
Let, (a-b)x² + (b-c)x + (c-a)=0
quadratic equation is (a – b)x2 + (b – c)x + (c – a) = 0
we know that, the root are equal,
we will discriminent of the quadritic equation = 0
Hence (b – c)² = 4(a – b)(c – a)
⇒ b² + c² – 2bc = 4(ac – a² – bc + ab)
⇒ b² + c² – 2bc = 4ac – 4a² – 4bc + 4ab
⇒ b² + c² – 2bc – 4ac + 4a² + 4bc – 4ab = 0
⇒ b²+ c² + 4a² + 2bc – 4ac – 4ab = 0
⇒ b² + c² + (2a)² + 2(b)(c) – 2(2a)c – 2(2a)b = 0
⇒ b² + c² + (–2a)² + 2(b)(c) + 2(–2a)c + 2(–2a)b = 0
⇒ (b + c – 2a)² = 0
⇒ b + c – 2a = 0
∴ b + c = 2a
Hence ,(a-b)x² + (b-c)x + (c-a)=b + c = 2a