Math, asked by krish9549655249, 1 month ago

(a+b)x + (a-b)y = a^2 - 2ab -b^2 ; (a+b)x + (a+b)y = a^2 +b^2 find x and y

Answers

Answered by shinejaipur2006
0

Answer:

answer is 6

I hope this will help you

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:(a + b)x + (a - b)y =  {a}^{2} - 2ab -  {b}^{2} -  - (1)

and

\rm :\longmapsto\:(a + b)x + (a + b)y =  {a}^{2} + {b}^{2} -  - (2)

On Subtracting equation (2) from equation (1), we get

\rm :\longmapsto\: - 2by =  - 2ab - 2 {b}^{2}

\rm :\longmapsto\: - 2by =  - 2b(a +  {b})

\bf\implies \:y = a + b

On substituting the value of y, in equation (2), we get

\rm :\longmapsto\:(a + b)x + (a + b)(a + b) =  {a}^{2} + {b}^{2}

\rm :\longmapsto\:(a + b)x +  {a}^{2} + 2ab +  {b}^{2}  =  {a}^{2} + {b}^{2}

\rm :\longmapsto\:(a + b)x +  2ab  = 0

\rm :\longmapsto\:(a + b)x   =  - 2ab

\bf\implies \:x =  -  \: \dfrac{2ab}{a + b}

Verification :-

Consider Line (1) LHS

\rm :\longmapsto\:(a + b)x + (a - b)y

On substituting the values of x and y, we get

\rm \:  =  \:  \: (a + b)\bigg( - \dfrac{2ab}{a + b} \bigg)  + (a - b)(a + b)

\rm \:  =  \:  \:  - 2ab +  {a}^{2}  -  {b}^{2}

\rm \:  =  \:  \:   {a}^{2} - 2ab  -  {b}^{2}

Hence, Verified

Consider line (2) LHS

\rm :\longmapsto\:(a + b)x + (a  +  b)y

On substituting the values of x and y, we get

\rm \:  =  \:  \: (a + b)\bigg( - \dfrac{2ab}{a + b} \bigg)  + (a + b)(a + b)

\rm \:  =  \:  \:  - 2ab +  {a}^{2}  +  {b}^{2}  + 2ab

\rm \:  =  \:  \:  {a}^{2}  +  {b}^{2}

Hence, Verified

Similar questions