(a-b)x+(a+b)y equal to a square minus 2 a b minus b square
(a+b)(x+y) equal to a square + b square
Answers
The value of x = a+b and y =
Step-by-step explanation:
Given :
(a-b)x+(a+b)y = a²-2ab-b²
(a+b)(x+y) = a²+b²
To find value of x and y
(a-b)x+(a+b)y = a²-2ab-b²
ax-bx+ay+by = a²-2ab-b²
ax+ay-bx+by = a²-2ab-b²
a(x+y) + b(y-x) = a²-2ab-b² .................(1)
(a+b)(x+y) = a²+b² (given)
ax+ay+bx+by = a²+b²
a(x+y)+b(x+y) = a²+b²
a(x+y) = a²+b² - b(x+y) .......................(2)
Substituting value of a(x+y) in equation (1) we get,
a²+b² - b(x+y) + b(y-x) = a²-2ab-b²
b² - bx - by +by - bx = -2ab - b²
b²+ b² - 2bx = - 2ab
2b² + 2ab = 2bx
2b(b+a) = 2bx
x = a+b
Now substituting x = a+b we get
(a+b)(x+y) = a²+b²
(a+b)(a+b+y) = a²+b²
a²+ab+ay+ab+b²+by = a²+b²
2ab+y(a+b) = 0
y(a+b) = - 2ab
Hence the value of x = a+b and y =
To Learn More.....
1. Solve the equation ax^2+ 2abx =0 , a, b is not equal to 0 using factorization
https://brainly.in/question/14305925
2. Solve the equation 18x³+81x²+lambda x +60=0,one root being half the sum of the other two. Hence find the value of lambda.
https://brainly.in/question/4790259
ok thanks you so much for give answer