Math, asked by aujlagurtej142, 1 year ago

A bag contains 4 white, 5 red and 6 black balls. Sahil puts his hands inside the bag and takes out a ball. What is the probability that the ball (a) White (b) Red (c) Black?​

Answers

Answered by anshsaini622
5

Answer:

(A) Probability of white balls is 4/15

(B) Probability of red balls is 1/3

(C) Probability of black balls is 2/5

Answered by Anonymous
8

\bold\red{\underline{\underline{Answer:}}}

\bold{(a)Probability \ of \ getting \ white \ ball \ is \frac{4}{15}}

\bold{(b)Probability\ of \ getting \ red \ ball \ is \frac{1}{3}}

\bold{(c)Probability \ of \ getting \ black \ ball \ is \frac{6}{15}}

\bold\orange{Given:}

\bold{A \ bag \ contain,}

\bold{=>4 \ white \ balls}

\bold{=>5 \ red \ balls}

\bold{=>6 \ black \ balls}

\bold\pink{To \ find:}

\bold{Probability \ that \ the \ ball \ is}

\bold{=>(a)White}

\bold{=>(b)Red}

\bold{=>(c)Black}

\bold\green{\underline{\underline{Solution}}}

\bold{Total \ number \ of \ balls}

\bold{=4+5+6=15}

\bold{\tt{\therefore{n(S)=15}}}

\bold{(a)}

\bold{Let \ A \ be \ the \ of \ getting \ white \ ball}

\bold{Number \ of \ white \ balls=4}

\bold{\tt{\therefore{n(A)=4}}}

\bold{P(A)=\frac{n(A)}{n(S)}}

\bold{P(A)=\frac{4}{15}}

\bold\purple{\tt{\therefore{Probability \ of \ getting \ white \ ball \ is \frac{4}{15}}}}

_____________________________________

\bold{(b)}

\bold{Let \ B \ be \ the \ event \ of \ getting \ red \ ball}

\bold{Number \ of \ red \ balls=5}

\bold{\tt{\therefore{n(B)=5}}}

\bold{P(B)=\frac{n(B)}{n(S)}}

\bold{P(B)=\frac{5}{15}}

\bold{P(B)=\frac{1}{3}}

\bold\purple{\tt{\therefore{Probability \ of \ getting \ red \ ball \ is \frac{1}{3}}}}

_____________________________________

\bold{(c)}

\bold{Let \ C \ be \ the \ event \ of \ getting \ black \ ball}

\bold{Number \ of \ black \ balls=6}

\bold{\tt{\therefore{n(C)=6}}}

\bold{P(B)=\frac{n(C)}{n(S)}}

\bold{P(B)=\frac{6}{15}}

\bold\purple{\tt{\therefore{Probability \ of \ getting \ black \ ball \ is \frac{6}{15}}}}

Similar questions