Math, asked by nonstpdhamaka4219, 11 months ago

A bag contains 4 white ball, 6 red balls, 7 black balls and 3 blue balls. One ball is drawn at random from the bag. Find the probability that the ball drawn is
(i) white
(ii) not black
(iii) neither white nor black

Answers

Answered by Anonymous
35

Answer:

\huge\fcolorbox{black}{pink}{Answer-}

A bag contains :

white balls = 4

red balls = 6

black balls = 7

blue balls = 3

________________

total balls = 20

1.) P (white ) = 4 / 20

= 1 / 5

2.) P ( not black) = 13 / 20

3.) P ( neither white nor black ) = 9 / 20

Answered by Vamprixussa
56

Given

\bold{Total \ no: \ of \ white \ balls} = 4\\\bold{Total \ no: \ of \ red \ balls} = 6\\\bold{Total \ no: \ of \ black \ balls} = 7\\\bold{Total \ no: \ of \ blue \ balls} = 3\\\implies \bold{Total \ no: \ of \ balls} = 4 + 6 + 7 + 3 =\underline{\underline{20}}

(i) \bold{ Probability \ of \ getting \ a \ white \ ball} = \boxed{\boxed{\bold{\frac{4}{20}= \frac{1}{5}  }}}}

(ii)\bold{ Probability \ of \ not \ getting \ black} = 1-\dfrac{7}{20} = \boxed{\boxed{\bold{\dfrac{13}{20}}}}

(iii) \bold{ Probability \ of \ getting \ neither \ white \ or \ black} = \boxed{\boxed{\bold{\dfrac{9}{20}}}}

                                                 

Similar questions