Math, asked by Iqrakafeel8343, 9 months ago

A bag contains 5 blue balls and 7 white balls find the probability of not getting a blue ball

Answers

Answered by Vamprixussa
7

Given

\bold{Total \ number \ of \ blue \ balls} = 5

\bold{Total \ number \ of \ white \ balls} = 7

\bold{Total \ number \ of \  balls} = 5+7=12

                                                                                             

SOMETHING YOU NEED TO KNOW

\sf Probability \ of \ an \ outcome = \dfrac{Given \ outcome}{total \ no: \ of \ outcomes}

\sf Probability \ of \ not \ getting \ an \ outcome =1- \dfrac{Given \ outcome}{total \ no: \ of \ outcomes}

                                                                       

\implies \sf Probability \ of \ not \ getting \ a \ blue \ ball \\

=1- \dfrac{5}{12}

= \dfrac{12-5}{12}

= \dfrac{7}{12}

\boxed{\boxed{\bold{Therefore, \ the \ probability \ of \ not \ getting \ a \blue \ ball \ is \ \frac{7}{12}}}}}}}

                                                             

Answered by amitkumar44481
34

SolutioN :

Let,

  • The Total number of blue balls = 5.
  • And Total number of white balls = 7.
  • Total number of balls bag contains = 12.

ConcepT :

 \tt \bigstar \: Probability  \: of  \: any  \: event  \: is  \: always

  \tt  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0 \leqslant   \:  Probability  \: \leqslant 1.

So, We can say that Sum of any given probability ( P ) is must be equal to 1.

\rule{100}2

 \tt  \dagger \:  \:  \:  \:  \: Probability  \: of \:  an  \: event =  \dfrac{ Number  \: of \:  favorable \:  Outcome }{Total \:  number \:  of \:  Outcome}

 \tt  \longmapsto P =  \dfrac{5}{12}

☯ Let's Find Probability of not getting a blue ball.

 \tt  \longmapsto  1 -  \dfrac{5}{12}

 \tt  \longmapsto   \dfrac{12 - 5}{12}

 \tt  \longmapsto   \dfrac{7}{12}

Therefore, the probability of not getting a blue ball is 7 / 12.

\rule{200}3

VerificatioN :

→ 1 = 7 / 12 + 5 / 12

→ 1 = 12 / 12.

→ 1 = 1.

Hence Verify.

Similar questions