Math, asked by shreshthi34, 10 months ago

A bag contains 5 red balls 8 white ballls 4 green balls anmnd 7 balck balls if one ball is drawn random find the probability i.e one black two not green

Answers

Answered by Vamprixussa
20

Given

\bold{Total \ no: \ of \ red \ balls} = 5\\\bold{Total \ no: \ of \ white \ balls} = 8\\\bold{Total \ no: \ of \ green \ balls} = 4\\\bold{Total \ no: \ of \ black \ balls} = 7\\

\implies \bold{Total \ no: \ of \ balls} = 5 + 8 + 4 + 7 = 24

(i)

\bold{Probability \ of \ getting \ a \ black \ ball} =\boxed{\boxed{\bold{ \dfrac{7}{24} }}}

(ii)

\bold{Probability \ of \ not \ getting \ a \ green} = \boxed{\boxed{\bold{\frac{20}{24} =  \frac{5}{6}}}}}

                                                           

Answered by Anonymous
16

\huge \underline {\underline{ \mathfrak{ \green{Ans}wer \colon}}}

Given :

  • Number of Red balls = 5
  • Number of white balls = 8
  • Number of Green balls = 4
  • Number of Black Balls = 7

To Find :

  • Probability of a black ball
  • Probability of not to get green

Solution :

  • Probability of getting a black ball

• Number of Black Balls = 7

• Total Number of Balls = 5 + 8 + 7 + 4 = 24

\dashrightarrow {\boxed{\tt{Probability \: = \: \dfrac{No. \: of \: black \: balls}{Total \: no. \: of \: balls}}}} \\ \\ \dashrightarrow \tt{Probability \: = \: \dfrac{7}{24}} \\ \\ \underline{\boxed{\sf{Probabilty \: is \: \large{\sf{\dfrac{7}{24}}}}}}

\rule{150}{0.5}

  • Probability of not green Ball

• No. of green Balls = 4

• Total no. of balls = 24

• No. of non-green balls = 24 - 4 = 20

\dashrightarrow {\boxed{\tt{Probability \: = \: \dfrac{No. \: of \: Non-Green \: Balls}{Total \: No. \: of \: balls}}}} \\ \\ \dashrightarrow \tt{Probabilty \: = \: \dfrac{20}{24}} \\ \\ \dashrightarrow \tt{Probability \: = \: \dfrac{5}{6}} \\ \\ \underline{\boxed{\sf{Probabilty \: of \: Non-Green \: balls \: is \: \large{\sf{\dfrac{5}{6}}}}}}

Similar questions