a bag contains 50p,25p,10p coins in the ratio 5:9:4 amounting to rs 206 find the number of coins of each type
Answers
Answered by
11
Let the no. of 50P,25P and 10Pcoins be 5x,9x and 4x
Total value of these coins=rs (5x×50÷100+9x×25÷100+4x×10÷100)
=5x÷2+9x÷4+2x÷5=rs 103x÷20
Total value of coins=rs 206
=>103x÷20=206
x=(206×20÷103)=> x=40.
no.of 50P coins =5x=(5×40)=200
no.of 25P coins=9c=(9×40)=360
no.of 10P coins =4x=(4×40)=160.
hope its help you bro...
Total value of these coins=rs (5x×50÷100+9x×25÷100+4x×10÷100)
=5x÷2+9x÷4+2x÷5=rs 103x÷20
Total value of coins=rs 206
=>103x÷20=206
x=(206×20÷103)=> x=40.
no.of 50P coins =5x=(5×40)=200
no.of 25P coins=9c=(9×40)=360
no.of 10P coins =4x=(4×40)=160.
hope its help you bro...
Similar questions