Math, asked by Anonymous, 5 months ago

A bag contains $510 in the form of 50 p, 25 p and 20 p coins in the ratio 2 : 3 : 4. Find the number of coins of each type. ​

Answers

Answered by dibyangshughosh309
34

Given :

  • Total amount of money is $510
  • Money in form 50p, 25p and 20p
  • Money in ratio 2 : 3 : 4

To find :

  • the numbers of coins of each type

Solution :

Let the number of 50 p, 25 p and 20 p coins be

  • 2x, 3x and 4x.

Then,

  \tt \to(2x \times  \cancel \frac{50}{100}  )+ (3x \times  \cancel \frac{25}{100})  +( 4x \times \cancel  \frac{20}{100} ) = 510

 \tt \to( \cancel2x \times  \frac{1}{ \cancel2} ) + (3x \times  \frac{1}{4} )  + (4x \times  \frac{1}{5}) = 510

 \tt \to x +  \frac{3x}{4}  +  \frac{4x}{5}  = 510

 \tt \to \frac{20x + 15x + 16x}{20}  = 510

 \tt \to \frac{51x}{20}  = 510

 \tt \to \: x =   \cancel{510}  \times  \frac{20}{ \cancel{51} }

 \tt \to \: x = 200

Now,

  • 2x = 2(200) = 400
  • 3x = 3(200) = 600
  • 4x = 4(200) = 800

Therefore, number of 50 p coins, 25 p coins and 20 p coins are \tt{\red{<strong>400, 600, 800</strong>}} respectively.

Answered by Anonymous
41

\large\underline{ \underline{ \sf \maltese{ \: Question⤵}}}

A bag contains $510 in the form of 50 p, 25 p and 20 p coins in the ratio 2 : 3 : 4. Find the number of coins of each type.

Solution

Let the number of 50 p, 25 p and 20 p coins be

2x, 3x and 4x.

Then,

\tt \to(2x \times \cancel \frac{50}{100} )+ (3x \times \cancel \frac{25}{100}) +( 4x \times \cancel \frac{20}{100} ) = 510

\tt \to( \cancel2x \times \frac{1}{ \cancel2} ) + (3x \times \frac{1}{4} ) + (4x \times \frac{1}{5}) = 510

\tt \to x + \frac{3x}{4} + \frac{4x}{5} = 510

\tt \to \frac{20x + 15x + 16x}{20} = 510

\tt \to \frac{51x}{20} = 510

\tt \to \: x = \cancel{510} \times \frac{20}{ \cancel{51}}

\tt \to \: x = 200

Now,

2x = 2(200) = 400

3x = 3(200) = 600

4x = 4(200) = 800

Therefore, number of 50 p coins, 25 p coins and 20 p coins are \tt{\blue{400, 600, 800}} respectively.

Thank you.

Similar questions