Physics, asked by saniyamalik78653, 9 months ago

A ball having the potential energy of 1000 J
is dropped from a height of 100 m. At
approximate what height (in metres) will the
kinetic energy be 5 times the potential
energy at that height?​

Answers

Answered by nirman95
5

Given:

A ball having the potential energy of 1000 J is dropped from a height of 100 m.

To find:

Height at which kinetic energy will be 5 times that of the potential energy.

Calculation:

Let the height from ground be x ;

 \rm{ \therefore \: kinetic \: energy = 5 \times (potential \: energy)}

 \rm{  =  >  \:  \dfrac{1}{2} m {v}^{2}  = 5 \times (m \times g \times x)}

 \rm{  =  >  \:  \dfrac{1}{2}  {v}^{2}  = 5 \times ( g \times x)}

 \rm{  =  >  \:  \dfrac{1}{2}  \bigg \{ {u}^{2} + 2g(h - x) \bigg \} = 5gx}

 \rm{  =  >  \:    \bigg \{ {u}^{2} + 2g(h - x) \bigg \} = 10gx}

 \rm{  =  >  \:    {u}^{2} + 2g(h - x)= 10gx}

 \rm{  =  >  \:    {u}^{2} + 2gh - 2gx= 10gx}

 \rm{  =  >  \:    {u}^{2} + 2gh= 12gx}

 \rm{  =  >  \:    {(0)}^{2} + 2gh= 12gx}

 \rm{  =  >  \:    0 + 2gh= 12gx}

 \rm{  =  >  \:    2gh= 12gx}

 \rm{  =  >  \:    2h= 12x}

 \rm{  =  >  \:    h= 6x}

 \rm{  =  >  \:    x =  \dfrac{h}{6} }

 \rm{  =  >  \:    x =  \dfrac{100}{6} }

 \rm{  =  >  \:    x =  16.67 \: m }

So, final answer is:

 \boxed{ \bf{ \:   height =  x =  16.67 \: m }}

Answered by EnchantedGirl
13

Given:

  • A ball having the potential energy of 1000 J is dropped from a height of 100 m.

To find:

  • Height at which kinetic energy will be 5 times that of the potential energy.

Calculation:

Let the height from ground be x .

Then,

\rm{  \: kinetic \: energy = 5 \times (potential \: energy)}

\rm{ = &gt; \: \dfrac{1}{2} m {v}^{2} = 5 \times (m \times g \times x)} </p><p>

\rm{ = &gt; \: \dfrac{1}{2} {v}^{2} = 5 \times ( g \times x)}

\rm{ = &gt; \: \dfrac{1}{2} \bigg \{ {u}^{2} + 2g(h - x) \bigg \} = 5gx}

\rm{ = &gt; \: \bigg \{ {u}^{2} + 2g(h - x) \bigg \} = 10gx}

\rm{ = &gt; \: {u}^{2} + 2g(h - x)= 10gx} \\ \\ \\ </p><p></p><p>\rm{ = &gt; \: {u}^{2} + 2gh - 2gx= 10gx}\\ \\ \\ </p><p></p><p>\rm{ = &gt; \: {u}^{2} + 2gh= 12gx}\\ \\ \\ </p><p></p><p>\rm{ = &gt; \: {(0)}^{2} + 2gh= 12gx}\\ \\</p><p></p><p>\rm{ = &gt; \: 0 + 2gh= 12gx}\\ \\</p><p></p><p>\rm{ = &gt; \: 2gh= 12gx}\\ \\</p><p></p><p>\rm{ = &gt; \: 2h= 12x}\\ \\</p><p></p><p>\rm{ = &gt; \: h= 6x}\\ \\</p><p></p><p>\rm{ = &gt; \: x = \dfrac{h}{6} }\\ \\</p><p>	</p><p> </p><p></p><p>\rm{ = &gt; \: x = \dfrac{100}{6} }\\ \\ </p><p>	</p><p> </p><p></p><p>\rm{ = &gt; \: x = 16.67 \: m }\\ \\ </p><p>=&gt;x=16.67m

Hence, required answer is:

\implies \boxed{ \bf{\blue{ \: height = 16.67 \: m} }}

Similar questions