Physics, asked by deepakkaushik491, 7 months ago


A ball is allowed to fall from top of a building. If 4, is
time taken to fall first th of its height and t, is time
taken to fall last th of its height then, tyt,

Answers

Answered by VedankMishra
1

\huge{\underline{\underline{.........Answer.........}}} </p><p>.........Answer.........

\huge{\underline{Given:-}} </p><p>Given:−

First 1/4 height by time {t_1}t

1

Last 1/4 height by time {t_2}t

2

Let the total height be H.

\huge{\underline{Explanation:-}} </p><p>Explanation:−

Ball is dropped so,

u = 0.

the second kinematic equation becomes.

s = \frac{1}{2} g {t}^{2}s= </p><p>2</p><p>1</p><p>	</p><p> gt </p><p>2</p><p> </p><p></p><p>\frac{H}{4} = \frac{1}{2} g {t_1}^{2} \: </p><p>4</p><p>H</p><p>	</p><p> = </p><p>2</p><p>1</p><p>	</p><p> gt </p><p>1</p><p>	</p><p>  </p><p>2</p><p> </p><p></p><p>t_1 = \sqrt{ \frac{H}{2g} }t </p><p>1</p><p>	</p><p> = </p><p>2g</p><p>H

Now, the body takes time T to reach the ground.

T = \sqrt{ \frac{2H}{g} }T= </p><p>g</p><p>2H \\

say,to cover 3H/4 height it takes time t'.

\frac{1}{2} g {t'}^{2} = \frac{3H}{4} </p><p>2</p><p>1</p><p>	</p><p> gt </p><p>′</p><p>  </p><p>2</p><p> = </p><p>4</p><p>3H \\

Now,

{t_2}t </p><p>2</p><p>	</p><p>  = T - {t'}t </p><p>′

</p><p>{t_2} = \sqrt{ \frac{2H}{g} - \frac{3H}{2g} }t </p><p>2</p><p>	</p><p> = </p><p>g</p><p>2H</p><p>	</p><p> − </p><p>2g</p><p>3H</p><p>	 \\

solving it.

t_2 = \sqrt{ \frac{H}{g} } ( \sqrt{2} - \frac{ \sqrt{3} }{ \sqrt{2} } )t </p><p>2 \\

 = </p><p>g</p><p>H</p><p>	</p><p> </p><p>	</p><p> ( </p><p>2</p><p>	</p><p> − </p><p>2</p><p>	</p><p> </p><p>3</p><p>	</p><p> </p><p>	</p><p> )</p><p></p><p>

t_2 = \sqrt{ \frac{H}{g} } ( \frac{ \ \: 2 - \sqrt{3} }{ \sqrt{2} } ) \:t </p><p>2</p><p>	 \\

= </p><p>g</p><p>H</p><p>	</p><p> </p><p>	</p><p> ( </p><p>2</p><p>	</p><p> </p><p> 2− </p><p>3</p><p>	</p><p> </p><p>	</p><p> )

Now,

\frac{t_2 }{t_1} = \frac{ \frac{2 - \sqrt{3} }{ \sqrt{2}} }{ \sqrt{ \frac{1}{2} } } </p><p>t </p><p>1</p><p>	</p><p> </p><p>t </p><p>2 \\

	</p><p> = </p><p>2</p><p>1</p><p>	</p><p> </p><p>	</p><p> </p><p>2</p><p>	</p><p> </p><p>2− </p><p>3 \\

\frac{t_2 }{t_1} = \frac{2 - \sqrt{3} }{1} </p><p>t </p><p>1</p><p>	</p><p> </p><p>t </p><p>2 \\

= </p><p>1</p><p>2− </p><p>3</p><p>	</p><p> </p><p> </p><p></p><p>

\frac{t_2 }{t_1} = 2 - \sqrt{3} </p><p>t </p><p>1</p><p>	</p><p> </p><p>t </p><p>2</p><p>	</p><p> </p><p>	</p><p> =2− </p><p>3 \\

\boxed{\boxed{\frac{t_2 }{t_1} = 2 - \sqrt{3}}} </p><p>t </p><p>1</p><p>	</p><p> </p><p>t </p><p>2</p><p>	</p><p> </p><p>	</p><p> =2− </p><p>3</p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p></p><p>So,the ratio is 2 - √3</p><p></p><p> </p><p>

Similar questions