Physics, asked by rakeshsaxena3552, 1 day ago

A ball is dropped from a height of 2.5 m. find the velocity when it reaches the floor?​

Answers

Answered by Yuseong
12

Given :

  • Height of building, h = 2.5 m
  • Initial velocity, u = 0 m/s [Dropped from height]
  • Acceleration due to gravity, g = 9.8 m/s² [Down]

To Find :

  • Final velocity, v

_______________________________________

By using the 3rd equation of motion for fréély falling bodies,

\twoheadrightarrow\boxed{\red{\sf{ v^2 - u^2 = 2gh}}}\\

  • v denotes final velocity
  • u denotes initial velocity
  • g denotes acceleration due to gravity
  • h denotes height

   \quad \twoheadrightarrow\sf { v^2 - (0)^2 = 2 \times 9.8 \times 2.5} \\

   \quad \twoheadrightarrow\sf { v^2= 19.6 \times 2.5} \\

   \quad \twoheadrightarrow\sf { v^2= 49} \\

   \quad \twoheadrightarrow\sf { v = \sqrt{49}} \\

   \quad \twoheadrightarrow\boxed{\sf { v = 7 \; ms^{-1} }} \\

_______________________________________

Equations of motion for fréély falling bodies,

  • v = u + gt
  • h = ut + ½gt²
  • v² — u² = 2gh

Here,

  • v denotes final velocity
  • u denotes initial velocity
  • t denotes time
  • g denotes acceleration due to gravity
  • h denotes height
Answered by Anonymous
13

Exρlαnαtion:

ㅤㅤㅤㅤㅤㅤㅤIt is given that : A ball is dropped from a height of 2.5 m . and We are required to find the final velocity when it reached floor.

As it dropped Initial velocity (u = 0 m/s) and h = 2.5m v=?

Now, by using equations of motion of freely falling body we can find the final velocity.

v² - u² = 2gh

>> v = final velocity

>> u = initial velocity

>> g = acceleration due to gravity (9.8 m/s²)

>> h = height

Substituting the values,

>> v² - (0) = 2 (9.8)(2.5)

>> v² = 2 × (98×25)/100

>> v² = 2 × (98/4)

>> v² = 98/2

>> v² = 49

v = √49

{\boxed{\sf\large\orangev = 7 m/s}

So, the velocity when it reaches the floor is 7 m/s.

[tex][/tex]

Similar questions