Physics, asked by roygunjan07, 6 months ago

a ball is dropped from the top of a building . the ball takes 1/4 s to fall past 12 m length of a sign board some distance from the top of the buildings . If the velocity of the ball at the top and at the bottom of thr board are v1 and v2 then
1) v1+v2= 96ms-1 2) v1-v2 =9.8ms-1
3) v1v2 = 1m2s-2 4) v1/v2 =1
please do with full process

Answers

Answered by Anonymous
50

Given:

Time taken by ball to fall past the sign board =  \sf \dfrac{1}{4} \ s

Length of the sign board = 12 m

Velocity of ball at the top of the board =  \sf v_1

Velocity of ball at the bottom of the board =  \sf v_2

Answer:

Motion during which ball fall past the sign board:

Initial velocity (u) =  \sf v_1

Final velocity (v) =  \sf v_2

Time taken (t) =  \sf \dfrac{1}{4} \ s

Acceleration due to gravity (g) = 10 m/s²

Height (h) = 12 m

By using  \sf 1^{st} equation motion:

 \bf \implies v = u + gt \\  \\  \rm \implies v_2 = v_1 + 10 \times  \dfrac{1}{4}  \\  \\  \rm \implies v_2 = v_1 + 2.5  \\  \\  \rm \implies v_2  -  v_1  = 2.5 \: m {s}^{ - 1}   \:  \:  \:   \:  ...eq_1

By using  \sf 3^{rd} equation motion:

 \bf \implies  {v}^{2}  =  {u}^{2}  + 2gh \\  \\  \rm \implies v_2 ^{2}  = v_1 ^{2}  + 2 \times 10 \times 12  \\  \\  \rm \implies v_2 ^{2}  = v_1 ^{2}  + 240 \\  \\   \rm \implies v_2 ^{2}   -  v_1 ^{2}   = 240 \\  \\    \rm \implies (v_2  -   v_1 ) (v_2   +     v_1 )= 240 \\  \\  \rm Using \ eq_1 :  \\  \\  \rm \implies 2.5(v_2   +     v_1 )= 240 \\  \\   \rm \implies v_2   +     v_1 =  \dfrac{240}{2.5} \\  \\ \rm \implies v_2   +     v_1 =96 \: m {s}^{ - 1}  \:  \:   \:  \: ...eq_2

Adding  \sf eq_1 and  \sf eq_2 :

\rm \implies v_2    -      v_1  + v_2   +     v_1 =2.5 + 96   \\  \\ \rm \implies 2v_2 = 98.5 \\  \\ \rm \implies v_2 =  \dfrac{98.5}{2}  \\  \\ \rm \implies v_2 = 49.25 \: m {s}^{ - 1}

By using  \sf eq_1 :

   \rm \implies 49.25  -  v_1  = 2.5  \\  \\ \rm \implies v_1 = 49.25 - 2.5 \\  \\ \rm \implies v_1 = 46.75

So,

 \rm \implies v_1v_2 = 49.25 \times 46.75 \\  \\ \rm \implies v_1v_2 = 2302.4375 \: m {s}^{ - 1}

—·—·—·—·—·—·—·—·—·—·—·—·—·—·—

 \rm \implies \dfrac{v_1}{v_2} = \dfrac{49.25}{46.75}  \\  \\  \rm \implies \dfrac{v_1}{v_2} =1.053

Correct Option:  \boxed{\mathfrak{(1) \ v_1 + v_2 = 96 \ ms^{-1}}}

Similar questions