Math, asked by pragadeesh35, 1 year ago

A ball is gently dropped from a height of
20 m. If its velocity increases uniformly at
the rate of 10 ms, with what velocity will
it strike the ground? After what time will it
strike the ground?​

Answers

Answered by Diksha12341
20

Step-by-step explanation:

Please mark me as brainliest answer

Attachments:
Answered by Harsh8557
46

Answer:

  • \sf{v = 20m/s}
  • \sf{t = 2s}

Step-by-step explanation:

{\underline{\underline{\sf{\red{{\bigstar}\:\:\:Given:-}}}}}

\tiny\:\:\:\:\bullet\:\:\:\sf\orange{Height \ (s) = 20m }\\\tiny\:\:\:\:\bullet\:\:\:\sf\green{Acceleration \ (a) = 10m/s^2}

{\underline{\underline{\sf{\orange{{\bigstar}\:\:\:ToFind:-}}}}}

\tiny\:\:\:\:\bullet\:\:\:\sf\purple{What\: velocity\: will\: it\: strike\: the\: ground}\\\tiny\:\:\:\:\bullet\:\:\:\sf\red{What \ time \ will \ it \ strike \ the \  ground}

{\underline{\underline{\sf{\blue{{\bigstar}\:\:\: Solution:-}}}}}

\dag\:\underline{\mathfrak{\purple{Using\: 3rd\: equation \:of \:motion }}}

\red{\underline{\boxed{\sf{v^2 = u^2 + 2as}}}}

{\underline{\sf{\:\:\:\:Where,\:\:\:}}}

\tiny\:\:\:\:\bullet\:\:\:\sf\orange{v = final \:velocity}\\ \tiny\:\:\:\:\bullet\:\:\:\sf\green{u = initial \:velocity}\\\tiny \:\:\:\:\bullet\:\:\:\sf\blue{a = acceleration\: or \:deceleration}\\\tiny \:\:\:\:\bullet\:\:\:\sf\red{s = displacement}

\dag\:\underline{\mathfrak{\purple{Substituting \: the \: values}}}

\tiny\qquad\quad\rightarrow\:\:\:\:\sf{ v^2 = 0+2\times 10\times 20}

\tiny\qquad\quad\rightarrow\:\:\:\:\sf{ v^2 = 400}

\tiny\qquad\quad\rightarrow\:\:\:\:\sf{v = 20m/s}

\dag\:\underline{\mathfrak{\purple{Using\: 1st\: equation \:of \:motion }}}

\red{\underline{\boxed{\sf{v = u + at}}}}

{\underline{\sf{\:\:\:\:Where,\:\:\:}}}

\tiny\:\:\:\:\bullet\:\:\:\sf\orange{v = final \:velocity}\\ \tiny\:\:\:\:\bullet\:\:\:\sf\green{u = initial \:velocity}\\\tiny \:\:\:\:\bullet\:\:\:\sf\blue{a = acceleration\: or \:deceleration}\\\tiny \:\:\:\:\bullet\:\:\:\sf\red{t = time}

\dag\:\underline{\mathfrak{\purple{Substituting \: the \: values}}}

\tiny\qquad\quad\rightarrow\:\:\:\:\sf{t = \frac{v-u}{a}}

\tiny\qquad\quad\rightarrow\:\:\:\:\sf{t = \frac{20}{10}}

\tiny\qquad\quad\rightarrow\:\:\:\:\sf{t = 2s}

Similar questions