Physics, asked by andrajayanth8577, 9 months ago

A ball is gently dropped from a height of 20m . If it's velocity increases uniformly

Answers

Answered by Anonymous
45

\huge\star\sf\underline\pink{Solution :-}

 \\

We have,

\sf{ Initial\: velocity (u) = 0} \\ \\ \sf{ Acceleration (a) = 10\:ms^{-1}} \\ \\ \sf{ Distance (s) = 20\:m} \\ \\ \\

\sf\underline\red{To\:Find:-} \\ \\ \: \: \: \: \: \bullet\sf{Final\: velocity (v) = ?} \\ \\ \\

\sf\underline\red{Formula\:used:} \\ \\ \pink{\boxed{\sf{ v^2 = u^2 + 2as}}} \\ \\

Now,

We can put values in the Formulas,

\implies\sf{ v^2 = (0)^2 + 2 \times 10 \times 20} \\ \\ \\ \implies\sf{ v^2 = 0 + 400} \\ \\ \\ \implies\sf{ v = \sqrt{400} } \\ \\ \\ \implies\sf{ v = 20\:ms^{-1} } \\ \\

Thus,

The ball is strike with velocity of 20 metres/second.

Let's calculate Time:

We know that,

\huge\bullet\pink{\boxed{\sf{ v = u + at}}} \\ \\

So,

\implies\sf{ 20 = 0 + 10 \times t} \\ \\ \\ \implies\sf{ 10t = 20} \\ \\ \\ \implies{\sf{ t = \dfrac{20}{10} }} \\ \\ \\ \implies\sf{ t = 2 \: s} \\ \\

Thus,

The ball will strike the ground after 2 seconds.

Similar questions