A ball is kept at a height h above the surface of a heavy transparent sphere made of a material of refractive index μ. The radius of the sphere is R. At t = 0, the ball is dropped to fall normally on the sphere. Find the speed of the image formed as a function of time fort<2hg. Consider only the image by a single refraction.
Answers
Answered by
1
Given :
A transparent sphere refractive index= μ
radius of sphere =R
t=0 sec[ free fall-initially]
u= 0 m/s
let t be the time taken to travel the distance A to B.
Distance covered during this time is :
h=1/2 gt²
we are assuming distance of object from lens at any time is t.
u = -(h-1/2 gt²)
Refractive index of air, μ1 = 1
Refractive index of sphere, μ2 = μ (given)
μ/V+ 1/((h-1/2gt²)= μ-1/R
μ/v=μ-1/R-1/h-1/2gt²=[(μ-1)h-1/2gt²-R] / R(h-12gt²)
Let v be the image distance at any time t. Then,
v=μR(h-1/2gt²)/ (μ-1)(h-1/2gt²-R)
Therefore, velocity of the image V is given by,
V=dv/dt=d/dt [ μR(h-1/2gt²) / [(μ-1)h-1/2gt²]-R
=[ μR²gt / (μ-1)h-1/2gt²-R²]
Attachments:
Answered by
1
ʀᴇғᴇʀ ᴛᴏ ᴛʜᴇ ᴀᴛᴛᴀᴄʜᴍᴇɴᴛ-------
ᴀ ᴛʀᴀɴsᴘᴀʀᴇɴᴛ sᴘʜᴇʀᴇ ʀᴇғʀᴀᴄᴛɪᴠᴇ ɪɴᴅᴇx= μ
ʀᴀᴅɪᴜs ᴏғ sᴘʜᴇʀᴇ =ʀ
ᴛ=0 sᴇᴄ[ ғʀᴇᴇ ғᴀʟʟ-ɪɴɪᴛɪᴀʟʟʏ]
ᴜ= 0 ᴍ/s
ʟᴇᴛ ᴛ ʙᴇ ᴛʜᴇ ᴛɪᴍᴇ ᴛᴀᴋᴇɴ ᴛᴏ ᴛʀᴀᴠᴇʟ ᴛʜᴇ ᴅɪsᴛᴀɴᴄᴇ ᴀ ᴛᴏ ʙ.
ᴅɪsᴛᴀɴᴄᴇ ᴄᴏᴠᴇʀᴇᴅ ᴅᴜʀɪɴɢ ᴛʜɪs ᴛɪᴍᴇ ɪs :
ʜ=1/2 ɢᴛ²
ᴡᴇ ᴀʀᴇ ᴀssᴜᴍɪɴɢ ᴅɪsᴛᴀɴᴄᴇ ᴏғ ᴏʙᴊᴇᴄᴛ ғʀᴏᴍ ʟᴇɴs ᴀᴛ ᴀɴʏ ᴛɪᴍᴇ ɪs ᴛ.
ᴜ = -(ʜ-1/2 ɢᴛ²)
ʀᴇғʀᴀᴄᴛɪᴠᴇ ɪɴᴅᴇx ᴏғ ᴀɪʀ, μ1 = 1
ʀᴇғʀᴀᴄᴛɪᴠᴇ ɪɴᴅᴇx ᴏғ sᴘʜᴇʀᴇ, μ2 = μ (ɢɪᴠᴇɴ)
μ/ᴠ+ 1/((ʜ-1/2ɢᴛ²)= μ-1/ʀ
μ/ᴠ=μ-1/ʀ-1/ʜ-1/2ɢᴛ²=[(μ-1)ʜ-1/2ɢᴛ²-ʀ] / ʀ(ʜ-12ɢᴛ²)
ʟᴇᴛ ᴠ ʙᴇ ᴛʜᴇ ɪᴍᴀɢᴇ ᴅɪsᴛᴀɴᴄᴇ ᴀᴛ ᴀɴʏ ᴛɪᴍᴇ ᴛ. ᴛʜᴇɴ,
ᴠ=μʀ(ʜ-1/2ɢᴛ²)/ (μ-1)(ʜ-1/2ɢᴛ²-ʀ)
ᴛʜᴇʀᴇғᴏʀᴇ, ᴠᴇʟᴏᴄɪᴛʏ ᴏғ ᴛʜᴇ ɪᴍᴀɢᴇ ᴠ ɪs ɢɪᴠᴇɴ ʙʏ,
ᴠ=ᴅᴠ/ᴅᴛ=ᴅ/ᴅᴛ [ μʀ(ʜ-1/2ɢᴛ²) / [(μ-1)ʜ-1/2ɢᴛ²]-ʀ
=[ μʀ²ɢᴛ / (μ-1)ʜ-1/2ɢᴛ²-ʀ²]
ᴀ ᴛʀᴀɴsᴘᴀʀᴇɴᴛ sᴘʜᴇʀᴇ ʀᴇғʀᴀᴄᴛɪᴠᴇ ɪɴᴅᴇx= μ
ʀᴀᴅɪᴜs ᴏғ sᴘʜᴇʀᴇ =ʀ
ᴛ=0 sᴇᴄ[ ғʀᴇᴇ ғᴀʟʟ-ɪɴɪᴛɪᴀʟʟʏ]
ᴜ= 0 ᴍ/s
ʟᴇᴛ ᴛ ʙᴇ ᴛʜᴇ ᴛɪᴍᴇ ᴛᴀᴋᴇɴ ᴛᴏ ᴛʀᴀᴠᴇʟ ᴛʜᴇ ᴅɪsᴛᴀɴᴄᴇ ᴀ ᴛᴏ ʙ.
ᴅɪsᴛᴀɴᴄᴇ ᴄᴏᴠᴇʀᴇᴅ ᴅᴜʀɪɴɢ ᴛʜɪs ᴛɪᴍᴇ ɪs :
ʜ=1/2 ɢᴛ²
ᴡᴇ ᴀʀᴇ ᴀssᴜᴍɪɴɢ ᴅɪsᴛᴀɴᴄᴇ ᴏғ ᴏʙᴊᴇᴄᴛ ғʀᴏᴍ ʟᴇɴs ᴀᴛ ᴀɴʏ ᴛɪᴍᴇ ɪs ᴛ.
ᴜ = -(ʜ-1/2 ɢᴛ²)
ʀᴇғʀᴀᴄᴛɪᴠᴇ ɪɴᴅᴇx ᴏғ ᴀɪʀ, μ1 = 1
ʀᴇғʀᴀᴄᴛɪᴠᴇ ɪɴᴅᴇx ᴏғ sᴘʜᴇʀᴇ, μ2 = μ (ɢɪᴠᴇɴ)
μ/ᴠ+ 1/((ʜ-1/2ɢᴛ²)= μ-1/ʀ
μ/ᴠ=μ-1/ʀ-1/ʜ-1/2ɢᴛ²=[(μ-1)ʜ-1/2ɢᴛ²-ʀ] / ʀ(ʜ-12ɢᴛ²)
ʟᴇᴛ ᴠ ʙᴇ ᴛʜᴇ ɪᴍᴀɢᴇ ᴅɪsᴛᴀɴᴄᴇ ᴀᴛ ᴀɴʏ ᴛɪᴍᴇ ᴛ. ᴛʜᴇɴ,
ᴠ=μʀ(ʜ-1/2ɢᴛ²)/ (μ-1)(ʜ-1/2ɢᴛ²-ʀ)
ᴛʜᴇʀᴇғᴏʀᴇ, ᴠᴇʟᴏᴄɪᴛʏ ᴏғ ᴛʜᴇ ɪᴍᴀɢᴇ ᴠ ɪs ɢɪᴠᴇɴ ʙʏ,
ᴠ=ᴅᴠ/ᴅᴛ=ᴅ/ᴅᴛ [ μʀ(ʜ-1/2ɢᴛ²) / [(μ-1)ʜ-1/2ɢᴛ²]-ʀ
=[ μʀ²ɢᴛ / (μ-1)ʜ-1/2ɢᴛ²-ʀ²]
Attachments:
Similar questions