Physics, asked by ameti, 1 year ago

A ball is projected at an angle of 90° from horizontal with a inital velocity 120 m/s . Find the maximum height ball reached and the time taken to reach maximum height.​

Answers

Answered by BrainlyConqueror0901
62

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Height=720\:m}}}

\green{\tt{\therefore{Time\:taken=12\:sec}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Inital \: velocity(u) = 120 \: m/s \\  \\  \tt:  \implies Angle \: of \: projection = 90 \degree \\   \\  \tt:  \implies Acceleration(a) = 10 \: m/{s}^{2}  \\ \\   \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Maximum \: height = ? \\  \\ \tt:  \implies Time \: taken(t) =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {v}^{2}  =  {u}^{2}  + 2as \\  \\  \tt:  \implies  {0}^{2}  =  {(120)}^{2}  + 2 \times ( - 10) \times s \\  \\  \tt:  \implies 0 = 14400 - 20  \times  s \\  \\  \tt: \implies  - 20 \: s =  - 14400 \\  \\  \tt:  \implies s =  \frac{ - 14400}{ - 20}  \\  \\  \green{\tt:  \implies s = 720 \: m} \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies v = u + at \\  \\  \tt:  \implies 0 = 120 + ( -10) \times t \\  \\  \tt:  \implies  - 10t =  - 120 \\  \\  \tt:  \implies t =  \frac{ - 120}{ - 10}  \\  \\   \green{\tt: \implies t = 12 \: sec}

Answered by Saby123
69

</p><p>\huge{\fbox{\fbox{\mathfrak {\rightarrow{\leftarrow {\green{ANSWER \: - }}}}}}}

The maximum height reached by the ball is 720 metres and the time taken is 12 seconds.

</p><p>\orange{\underline {\underline {\tt{Step-By-Step-Explaination \: : }}}}

</p><p>\huge{\boxed{\boxed{\underline{\bold{\blue{\mathfrak{QUESTION \: : }}}}}}}

A Ball Is Projected At An Angle Of 90° With The Horizontal With A Initial Velocity 120 m/s.

To Find

  • Maximum Height Reached By The Ball

  • Time Taken To Reach The Maximum Height

PART A

</p><p>\red{\underline{\underline{\bigstar{\tt{Formula \: Used \: - }}}}}

</p><p>\huge{\fbox{\fbox{\rightarrow{\tt{\blue{V^2 \: = U^2 \: + 2A×S }}}}}}

Here, in this question, the ball finally reaches the ground hence:

  • V = 0 m/s

  • U = 120 m/s

  • g = -10 m/s approx

</p><p>\red{\underline{\underline{\bigstar{\tt{To  \: Find \: - \: S }}}}}

</p><p>\green{\bold{\tt{\boxed{\boxed{\therefore{0^2 \: = 120^2 - 10S }}}}}}

</p><p>\huge{\blue{\fbox{\fbox{\bigstar{\mathfrak{S \: = 720 \: METRES.}}}}}}

PART B

</p><p>\red{\underline{\underline{\bigstar{\tt{Formula \: Used \: - }}}}}

</p><p>\huge{\fbox{\fbox{\rightarrow{\tt{\orange{V \: = U \: + AT }}}}}}

In this Case, the same values are used again...

Here, in this question, the ball finally reaches the ground hence:

V = 0 m/s

U = 120 m/s.

g = -10 m/s approx

</p><p>\green{\bold{\tt{\boxed{\boxed{\therefore{0 \: = 120-10T  }}}}}}

</p><p>\huge{\blue{\fbox{\fbox{\bigstar{\mathfrak{T \: = 12 \: SECONDS.}}}}}}

</p><p>\huge{\red{\mathfrak {\bold{\rightarrow{\leftarrow{HOPE \: THIS \: HELPS!!! }}}}}}

Similar questions