Physics, asked by jannatkhan43, 11 months ago


A ball is projected vertically upward with a
speed of 50 m/s. Find
(i) the maximum height
(ii) the time to reach the maximum height,
(iii) the speed at half the maximum height.​

Answers

Answered by ShivamKashyap08
14

{ \huge \bf { \mid{ \overline{ \underline{Question}}} \mid}}

A ball is projected vertically upward with a speed of 50 m/s.

Find

(i) the maximum height

(ii) the time to reach the maximum height,

(iii) the speed at half the maximum height.

\huge{\bold{\underline{\underline{Answer}}}}

\huge{\bold{\underline{Given:-}}}

  • Initial velocity (u) = 50 m/s
  • Acceleration due to gravity (g) = - 10 m/s².

\huge{\bold{\underline{Explanation:-}}}

\rule{300}{1.5}

Applying Third kinematic equation,

\large{\boxed{\tt v^2 - u^2 = 2as}}

Here,

  • Final velocity (v) = 0 m/s.
  • Distance (s) =Maximum Height (H)

Substituting the values,

\large{\tt \hookrightarrow (0)^2 - (50)^2 = 2 \times - 10 \times H}

\large{\tt \hookrightarrow 0 - 2500 = - 20 \times H}

\large{\tt \hookrightarrow  - 2500 = - 20 \times H}

\large{\tt \hookrightarrow  \cancel{-} 2500 = \cancel{-} 20 \times H}

\large{\tt \hookrightarrow   2500 =  20 \times H}

\large{\tt \hookrightarrow H = \dfrac{2500}{20}}

\large{\tt \hookrightarrow H = \cancel{\dfrac{2500}{20}}}

\huge{\boxed{\boxed{\tt H = 125 \: m}}}

So, the Maximum height attained is 125 Meters.

\rule{300}{1.5}

\rule{300}{1.5}

Applying First kinematics equation,

\large{\boxed{\tt v = u + at}}

\large{\tt \hookrightarrow 0 = 50 + (- 10) \times t}

\large{\tt \hookrightarrow 0 = 50 - 10 \times t}

\large{\tt \hookrightarrow 10 \times t = 50}

\large{\tt \hookrightarrow 10t = 50}

\large{\tt \hookrightarrow t = \dfrac{50}{10}}

\large{\tt \hookrightarrow t = \cancel{\dfrac{50}{10}}}

\huge{\boxed{\boxed{\tt t = 5 \: Sec}}}

So, the time taken by the body to reach Maximum height is 5 seconds.

\rule{300}{1.5}

\rule{300}{1.5}

Now, At Half the Height.

h = H/2

⇒ h = 125/2 meters.

Applying Third kinematic equation,

\large{\boxed{\tt v^2 - u^2 = 2as}}

Here,

  • s = h = 125/2 meters
  • v ≠ 0 m/s.
  • a = - g = - 10 m/s²

Substituting the values,

\large{\tt \hookrightarrow v^2 - (50)^2 = 2 \times - 10 \times \dfrac{125}{2}}

\large{\tt \hookrightarrow v^2 - (50)^2 = \cancel{2} \times - 10 \times \dfrac{125}{\cancel{2}}}

\large{\tt \hookrightarrow v^2 - (50)^2 = - 10 \times 125}

\large{\tt \hookrightarrow v^2 - 2500 = - 1250}

\large{\tt \hookrightarrow v^2 = 2500 - 1250}

\large{\tt \hookrightarrow v^2 = 1250}

\large{\tt \hookrightarrow v = \sqrt{1250}}

\large{\tt \hookrightarrow v = 25 \sqrt{2}}

√2 = 1.414

\large{\tt \hookrightarrow v = 25 \times 1.414}

\huge{\boxed{\boxed{\tt v = 35.35 \: m/s}}}

So, the Velocity at half of the maximum height is 35.35 m/s.

\rule{300}{1.5}

Similar questions