Physics, asked by uroojnadeem68, 11 months ago

A ball is projected with a speed of 10 m/s. The two angles of projection for which the range is 5m are ? (g=10 m/s^2)

Answers

Answered by BrainlyConqueror0901
60

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Angle\:of\:projection=15°}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a ball is projected with a speed of 10 m/s.

• We have to find two angles of projection for which the range is 5m .

  \underline \bold{Given : }\\  \implies Initial \: speed(u) = 10 \: ms \\  \\  \implies Range = 5 \: m \\  \\  \implies Gravity(g) = 10 \: m {s}^{2}  \\  \\ \underline \bold{To \: Find : } \\  \implies Angle \: of \: projection( \theta) = ?

• According to given question :

 \bold{Using \: formula \: of \: range : } \\  \implies R =  \frac{ {u}^{2} \: sin \: 2 \theta }{g} \\   \\  \implies 5 =  \frac{10 \times 10 \times sin \:  2\theta}{10}   \\  \\  \implies  \frac{\cancel{50}}{\cancel{100}}  = sin \: 2 \theta \\  \\  \implies sin \: 2 \theta =  \frac{1}{2}  \\   \\  \implies sin \: 2 \theta = sin \: 30 \degree \\  \\  \implies 2 \theta = 30 \degree \\  \\  \implies   \bold{\theta = 15 \degree}

Answered by Anonymous
46

 \large \bold{ \underline{ \underline{ \sf \: Answer : \:  \:  \: }}}

 \to  \sf  Angle \: of \:  projection = 15 \degree

 \large \bold{ \underline{ \underline{ \sf \:  Explaination : \:  \:  \: }}}

Given ,

Speed ( u ) = 10 m/s

Range ( R ) = 5 m

Acceleration due to gravity ( g ) = 10 m/s²

We know that ,

 \large \bold{ \fbox{ \fbox{ \sf Range =  \frac{ {(u)}^{2} \:  \times  \:  sin2 \theta }{g} }}}

 \to \sf 5 =  \frac{ {(10)}^{2} \times sin2 \theta }{10}  \\  \\  \to \sf 5 =  \frac{100 \times sin2 \theta }{10}  \\  \\ \to \sf sin2 \theta =  \frac{5}{10}  \\  \\ \to \sf sin2 \theta =  sin \: 30 \degree \\  \\ \to \sf 2 \theta = 30 \degree \\  \\  \to \sf \theta = 15 \degree

  \therefore The required value of angle of projectionis is 15°

_______ Tera Bhai ❤

Similar questions