Physics, asked by Vanshaj4892, 1 year ago

A ball is released from the top of a tower. The ratio of work done by force of gravity in first, second and third second of the motion of the ball is [a] 1 : 2 : 3 [b] 1 : 4 : 9 [c] 1 : 3 : 5 [d] 1 : 5 : 3

Answers

Answered by ShivamKashyap08
15

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

  • Ball is released Therefore Initial velocity (u) = 0 m/s.
  • Acceleration = g.

\huge{\bold{\underline{Explanation:-}}}

Let the Distances travelled in 1st, 2nd and 3rd seconds be h₁ ,h₂ and h₃.

Now, From Work done Formula,

\large{\boxed{\tt W = mgh}}

The work done in 1st second,

\large{\tt \leadsto W_1 = mgh_1}

\large{\tt \leadsto W_1 = mgh_1 \: ----(1)}

The work done in 2nd second,

\large{\tt \leadsto W_2 = mgh_2}

\large{\tt \leadsto W_2 = mgh_2 \: ----(2)}

The work done in 3rd second,

\large{\tt \leadsto W_3 = mgh_3}

\large{\tt \leadsto W_3 = mgh_3 \: ----(3)}

Now, Taking The ratio's

I.e \large{\bold{\tt W_1 : W_2 : W_3 }}

Substituting the values,

\large{\tt \leadsto W_1 : W_2 : W_3 = mgh_1 : mgh_2 : mgh_3}

\large{\tt \leadsto W_1 : W_2 : W_3 = (mg) \times h_1 : (mg) \times h_2 : (mg) \times h_3}

\large{\tt \leadsto W_1 : W_2 : W_3 = \cancel{(mg)} \times h_1 : \cancel{(mg)} \times h_2 : \cancel{(mg)} \times h_3}

Therefore,

\large{\tt \leadsto W_1 : W_2  : W_3  = h_1 : h_2 : h_3 \: ----(a)}

\large{\boxed{\tt  W_1 : W_2  : W_3  = h_1 : h_2 : h_3 }}

\rule{300}{1.5}

\rule{300}{1.5}

There is a constant acceleration on the ball I.e "g"(Acceleration due to gravity).

Now, Using nth second Formula,

\large{\boxed{\tt S_n = u + \dfrac{a}{2}(2n - 1)}}

Now, For Height h₁

\large{\tt \leadsto  h_1 = u + \dfrac{a}{2}(2n - 1)}

Initial velocity (u) = 0 m/s.

\large{\tt \leadsto h_1 = 0 + \dfrac{a}{2}(2 \times 1 - 1)}

(Here n = 1 second because The body is falling uniformly)

\large{\tt \leadsto h_1 = \dfrac{a}{2}(2 - 1)}

\large{\tt \leadsto h_1 = \dfrac{a}{2}[1] \: ----(4)}

Now, For Height h₂

\large{\tt \leadsto  h_2 = u + \dfrac{a}{2}(2n - 1)}

Initial velocity (u) = 0 m/s.

\large{\tt \leadsto h_2 = 0 + \dfrac{a}{2}(2 \times 2 - 1)}

(Here n = 2 second because The body is falling uniformly)

\large{\tt \leadsto h_2 = \dfrac{a}{2}(4 - 1)}

\large{\tt \leadsto h_2  = \dfrac{a}{2}[3] \: ----(5)}

Now, For Height h₃

\large{\tt \leadsto  h_3 = u + \dfrac{a}{2}(2n - 1)}

Initial velocity (u) = 0 m/s.

\large{\tt \leadsto h_3 = 0 + \dfrac{a}{2}(2 \times 3 - 1)}

(Here n = 3 second because The body is falling uniformly)

\large{\tt \leadsto h_3 = \dfrac{a}{2}(6 - 1)}

\large{\tt \leadsto h_3 = \dfrac{a}{2}[5] \: ----(6)}

Now, Taking Ratio

\large{\bold{\tt h_1 : h_2 : h_3}}

Substituting the values,

\large{\tt \leadsto h_1 : h_2 : h_3 = \dfrac{a}{2}[1] : \dfrac{a}{2}[3] : \dfrac{a}{2}[5]}

\large{\tt \leadsto h_1 : h_2 : h_3 = \cancel{\dfrac{a}{2}}[1] : \cancel{\dfrac{a}{2}}[3] : \cancel{\dfrac{a}{2}}[5]}

it becomes,

\large{\tt \leadsto h_1 : h_2 : h_3 = 1 : 3 :5 \: ----(b) }

\large{\boxed{\tt  h_1 : h_2 : h_3 = 1 : 3 :5}}

\rule{300}{1.5}

\rule{300}{1.5}

Substituting the value of equation (b) in equation (a)

\large{\tt \leadsto W_1 : W_2  : W_3  = h_1 : h_2 : h_3 }

\large{\tt \leadsto W_1 : W_2  : W_3  = 1 : 3 : 5}

\huge{\boxed{\boxed{\tt W_1 : W_2  : W_3  = 1 : 3 : 5}}}

Hence derived!

\rule{300}{1.5}

Similar questions