Physics, asked by SerenaSmith7265, 9 months ago

A ball is released from the top of tower of height h meter .it takes T second to reach the ground.what is the position of the ball in T/2seconds

Answers

Answered by Anonymous
17

Topic :- Motion under gravity

\maltese\:\underline{\sf AnsWer :}\:\maltese

A ball is released from the top of tower of height h meter. That means Initial Velocity (u) will be 0 in Time (t) = 0 and Time taken to reach ground (T) will be \sf \sqrt{\dfrac{2H}{g}}. We need to find the position of the ball in T/2 seconds.

  • \bf Let\: t_1 = \dfrac{T}{2}\: s

By using second kinematical equation of motion we have :-

\longrightarrow \sf H_1 = u + \dfrac{1}{2} gt_1^2 \\  \\

\longrightarrow \sf H_1 = u + \dfrac{1}{2} g \bigg( \dfrac{T}{2}  \bigg)^2 \\  \\

\longrightarrow \sf H_1 = 0 + \dfrac{1}{2} g \bigg( \dfrac{T}{2}  \bigg)^2 \\  \\

\longrightarrow \sf H_1 =  \dfrac{1}{2} g \bigg( \dfrac{T}{2}  \bigg)^2 \\  \\

\longrightarrow \sf H_1 =  \dfrac{1}{2} g \dfrac{T^{2} }{4} \qquad  \\  \\

\longrightarrow \sf H_1 =  \dfrac{1}{2} \times  g \times  \dfrac{1 }{4} \times  T^{2} \qquad  ...(1) \\  \\

But we know that time taken to reach ground (T) will be

\bullet \: \sf T = \sqrt{\dfrac{2H}{g}} \\

\bullet \: \sf T^{2}  = \dfrac{2H}{g} \qquad...(2) \\

Substituting the value of T from equation (2) to equation (1) :

\longrightarrow \sf H_1 =  \dfrac{1}{2} \times  g \times  \dfrac{1 }{4}   \times \dfrac{2H}{g}   \\  \\

\longrightarrow \sf H_1 =  \dfrac{1}{2} \times  g \times  \dfrac{2H }{4g}    \\  \\

\longrightarrow  \underline{ \boxed{\sf H_1 =  \dfrac{H }{4}}}    \\  \\

Also,

\longrightarrow \sf H = H_1 + H_2    \\  \\

\longrightarrow \sf H_2 =   H  -  H_1     \\  \\

\longrightarrow \sf H_2 =   H  -   \frac{H}{4}     \\  \\

\longrightarrow \sf H_2 =   \frac{  4  H - H}{4}     \\  \\

\longrightarrow \underline{ \boxed{ \sf H_2 =   \frac{ 3H}{4}}}     \\  \\

Attachments:
Similar questions