Physics, asked by angelashi123, 7 months ago

A ball is themrown such that maximum height is 45m and range is 180m. Find u and theta?

Answers

Answered by Anonymous
113

Question :

A ball is thrown such that maximum height is 45m and 180m. Find u and \theta.

Answer :

Given :

R = 180 m

H = 45 m

where -

\longrightarrowR is range.

\longrightarrowH is maximum height.

━━━━━━━━━━━━

To Find :

Initial veloicty \longrightarrow u

Angle of projection \longrightarrow  \theta

━━━━━━━━━━━━

Formula used :

\boxed{\rm\pink{ R = \dfrac{u^2sin2\theta}{g}}}

\boxed{\rm\pink{H = \dfrac{u^2sin^2\theta}{2g}}}

━━━━━━━━━━━━

Solution :

Substituting the value of R and H in the equation -

\rm 180 = \dfrac{u^2sin2\theta}{g} \longrightarrow eq 1

\rm 45 = \dfrac{u^2sin^2\theta}{2g} \longrightarrow eq 2

━━━━━━━━━━━━

\rm\red{Calculating\: angle\: of \:projection\: (\theta)} -

By dividing equation 1 by 2

\implies\rm \dfrac{180}{45} = \dfrac{\dfrac{ \cancel{u^2}sin2\theta}{\cancel{g}}}{\dfrac{\cancel{u^2}sin^2\theta}{2\cancel{g}}}

\implies\rm 4 =  \dfrac{2sin2\theta}{sin^2\theta}

\implies\rm 4 sin^2\theta = 2sin2\theta

\implies\rm 2 sin^2\theta = sin2\theta

\rm\purple{ sin2\theta = 2 sin\theta cos\theta}

\implies\rm 2 sin^2\theta = 2 sin\theta cos\theta

\implies\rm sin\theta = cos\theta

\implies\rm \theta = 45\degree

\rm\pink{<u>Angle</u><u>\:</u> <u>of</u> <u>\:</u><u>projection</u> = <u>45\degree</u>}

━━━━━━━━━━━━

\rm\red{Calculating\: Intitial\: velocity\: (u) }

Substituting the value of \rm \theta in eq 1

\implies\rm 180 = \dfrac{u^2sin2\theta}{g}

\implies\rm 180 = \dfrac{u^2sin2 (45) }{g}

\implies\rm 180 = \dfrac{u^2sin 90 }{g}

\implies\rm 180 =  \dfrac{u^2}{g}

\implies\rm u^2 = 180 \times 9.8

\implies\rm u^2 = 1764

\implies\rm u = 42 m/s

\rm\pink{<u>Initial</u> <u>\:</u><u>velocity</u> = <u>42</u> <u>m/s</u>}

━━━━━━━━━━━━

Similar questions