Physics, asked by divyakanna5152, 5 months ago

A ball is throw at an angle of 30 degrees off the horizontal, with an initial velocity of 28 m/s. what is the maximum height the ball will reach?

Answers

Answered by Cosmique
75

Given:

Angle of projection, \theta = 30^{\circ}

Initial velocity of projectile, u = 28 ms^{-1}

To find:

Maximum height reached by the projectile, H =?

Formula required:

Formula to calculate the maximum height 'H' reached by a projectile with angle of projection \theta, and initial velocity of projectile 'u', and acceleration due to gravity 'g'.

\bigstar \;\;\;\;\;H=\dfrac{u^2\;sin^2\theta}{2\;g}

Solution:

Using formula to calculate the Maximum hight reached by projectile

\to \; H = \dfrac{u^2\;sin^2\theta}{2\;g}

\to\;H = \dfrac{(28)^2\;sin^2 30^{\circ}}{2\;(9.8)}

\to\;H = \dfrac{784 \times \;sin^230^{\circ}}{19.6}

\to\;H = \dfrac{784}{19.6}\times sin^2 30^{\circ}

\to\;H = \dfrac{784}{19.6}\times \bigg(\dfrac{1}{2}\bigg)^2

\to\;H = \dfrac{784}{19.6}\times \dfrac{1}{4}

\to\;\;\boxed{\boxed{H=10\;\;m}}

Therefore,

The maximum height reached by the projectile will be 10 metres.

Answered by Anonymous
1085

Explanation:

Given :

  • A ball is throw at an angle = 30°

  • Initial velocity of projectile = 28

To find :

  • what is the maximum height the ball will reach?

Solution :

\sf  :  \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  H = \dfrac{u^2\;sin^2\theta}{2\;g}

Substitute all values :

\sf  :  \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \: H = \dfrac{(28)^2\;sin^2 30^{\circ}}{2\;(9.8)} \\\\

\sf  :  \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: H = \dfrac{ \cancel{784 }\times \;sin^230^{\circ}}{ \cancel{19.6} }\\  \\  \\ \sf  :  \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: H = 4 0 \times    {\bigg( \:  \: \frac{1}{2}   \: \bigg)}^{2}   \:  \\  \\  \\ \sf  :  \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: H =  \cancel{40  }\times    \bigg( \:  \: \frac{1}{ \cancel{4}}   \: \bigg)   \\  \\  \\ \sf  :  \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: H  = 10

\therefore\:\underline{\textsf{Hence, the required answer is \textbf{10}}}.

\rule{180}{1.5}

\bigstar\:\sf Trigonometric\:Values :\\\begin{tabular}{|c|c|c|c|c|c|}\cline{1-6}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}& Not D$\hat{e}$fined \\\cline{1-6}\end{tabular}


Anonymous: Nice!
Similar questions