Physics, asked by pr35124178, 6 months ago

A ball is throw at an angle of 30 degrees off the horizontal, with an initial velocity of 28 m/s. what is the maximum height the ball will reach?

Answers

Answered by Anonymous
28

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Angle \ of \ projection = 30^{\circ} }

\:\:\:\:\bullet\:\:\:\sf{Initial \ velocity \ of \ projectile = 28 \: m/s^{-1} }

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Height_{\:(max)}\: reached\: by \:the \:projectile }

\\

{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\

As we know that,

\\

\dashrightarrow\:\: \sf{ H = \dfrac{u^2\;sin^2\theta}{2\;g} }

\\

\dashrightarrow\:\: \sf{H = \dfrac{(28)^2\;sin^2 30^{\circ}}{2\;(9.8)}  }

\\

\dashrightarrow\:\: \sf{H = \dfrac{784 \times \;sin^230^{\circ}}{19.6}  }

\\

\dashrightarrow\:\: \sf{  H = \dfrac{784}{19.6}\times sin^2 30^{\circ}}

\\

\dashrightarrow\:\: \sf{  H = \dfrac{784}{19.6}\times \bigg(\dfrac{1}{2}\bigg)^2 }

\\

\dashrightarrow\:\: \sf{  H = \dfrac{784}{19.6}\times \dfrac{1}{4} }

\\

\dashrightarrow\:\: {\boxed{\sf{H=10\:m  }}}

Similar questions