Physics, asked by akingsingh392, 1 year ago

A ball is thrown at an angle of 45° from horizontal its velociy is 20m/s.(a) Find the time taken to stike the ground.(b)Find the maximum height it reaches.(c)How far away from the point its throws?[Take g=10m/s^2]​

Answers

Answered by BrainlyConqueror0901
29

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Time=2\sqrt{2}\:sec}}

{\bold{\therefore h_{max}=10\:m}}

{\bold{\therefore Range=40\:m}}

{\bold{\underline{\underline{Step-by-step\:explantion:}}}}

• In the given question information given about a ball is thrown at an angle of 45° from horizontal its velociy is 20m/s.

• We have to (a)Find the time taken to stike the ground.(b)Find the maximum height it reaches.(c)How far away from the point its throws?

 \underline \bold{Given : } \\  \implies Initial \: velocity(u) = 20 \: m/s \\  \\  \implies Angle \: of \: projection( \theta) = 45 \degree \\  \\ \underline \bold{to \: find: } \\  \implies Time \:of \: flight(T) = ? \\  \\  \implies  Maximum \: height(h_{max} )= ? \\  \\  \implies Range(R) = ?

• According to given question :

 \bold{For \: time \: of \: flight : } \\  \\  \bold{In \: y \: direction : } \\  \implies  s= u_{y}t +  \frac{1}{2} {a _{y} t}^{2}   \\  \\  \implies 0 = u \: sin \theta \times t -  \frac{1}{2}   {gt}^{2} \\  \\  \implies T=  \frac{2u \: sin \theta}{g}  \\  \\  \implies T=  \frac{2 \times 20 \times  \frac{1}{ \sqrt{2} } }{10}  \\  \\  \implies t =  \frac{\cancel{20} \sqrt{2} }{\cancel{10}}  \\  \\   \bold{\implies T=  2\sqrt{2}  \: sec} \\  \\  \:\:\:\:\bold{For \: h_{max} : } \\   \\   \bold{in \: y \: direction: } \\  \implies  {v}^{2} _{y}  -  {u}^{2} _{y} = 2{a} _{y}.dy \\  \\  \implies  {0}^{2}  -  {(u \: sin \theta)}^{2}  = 2( - g) h_{max} \\   \\  \implies h_{max} =  \frac{ {u}^{2} sin^{2} \theta }{2g}  \\  \\  \implies h_{max} =  \frac{\cancel{20} \times \cancel{20 }\times  \frac{1}{\cancel2} }{\cancel{2 }\times \cancel{10}}  \\  \\   \bold{\implies h_{max} = 10 \: m} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{For \: Range  : } \\  \implies Range=  \frac{ {u}^{2}  \: sin  2   \theta }{g}  \\  \\  \implies Range =  \frac{20 \times \cancel{20} \times 1}{\cancel{10}}  \\  \\   \bold{\implies Range = 40 \: m}

Attachments:
Answered by Anonymous
15

Answer:

[a] Time taken=2\sqrt{2}\:sec

[b] Maximum height= 10 m

[c] Range= 40 m

Step-by-step explanation :

 \bold{given } \\  \to velocity \: of \: ball = 20 \: ms \\  \to angle = 45 \degree \\  \\  \bold{Using \: formula \: of \: time \: of \: flight : } \\  \to t =  \frac{2usin \theta}{g}  \\ \\   \to t =  \frac{2 \times 20 \times  \frac{1}{ \sqrt{2} } }{10} \\   \\  \to t =  \frac{20 \sqrt{2} }{10}  \\  \\  \to t = 2 \sqrt{2 } \:  sec \\  \\  \bold{Using \: formula \: of \:  h_{max} }\\  \to h_{max} =  \frac{ {u}^{2} {sin}^{2} \theta  }{2g}  \\  \to h_{max} =  \frac{20 \times 20 \times  \frac{1}{2} }{2 \times 10}  \\  \\  \to h_{max} =  10 \: m \\  \\  \bold{Using \: formula \: of \: \: range} \\  \to r =  \frac{ {u}^{2}sin  \: 2 \: \theta }{g}  \\  \\  \to r =  \frac{20 \times 20 \times 1}{10}  \\  \\  \to r = 40 \: m

Similar questions