Physics, asked by Arceus02, 10 months ago

A ball is thrown such that the time of flight is 5 seconds and the horizontal range is 200m. Find the magnitude and direction of velocity with which the ball hits the ground?​

Answers

Answered by Anonymous
57

Answer:

\boxed{\sf Magnitude \ of \ velocity = 5\sqrt{89} \ m/s} \\ \boxed{\sf Direction \ of \ velocity (\theta) = tan^{-1}(\frac{5}{8})  }

Given:

Time of flight = 5 seconds

Horizontal Range = 200 m

To Find:

Magnitude and direction of velocity with which the ball hits the ground.

Explanation:

Magnitude and direction of velocity with which the ball hits the ground will be equal to magnitude and direction of velocity of projection.

Let velocity of projection be 'v'

\sf \implies Time \ of \ flight \ (T) = \frac{2v sin \theta }{g} \\ \\ \sf \implies 5=\frac{2v sin \theta}{10}  \\ \\ \sf \implies 5 = \frac{\cancel{2}v sin \theta}{\cancel{2} \times 5}  \\ \\ \sf \implies 5 = \frac{v sin \theta}{ 5} \\ \\ \sf \implies \frac{v sin \theta}{ 5} = 5  \\ \\ \sf \implies v sin \theta=5 \times 5  \\ \\ \sf \implies v sin \theta= 25

\sf vsin \theta = v_{y} = 25 \ m/s

\\ \\ \sf \implies Range \ (R) =\frac{v^{2}sin2 \theta }{g}  \\ \\ \sf \implies R =\frac{2v^{2}sin \theta cos \theta }{g}  \\ \\ \sf \implies R =vcos \theta \times \frac{2vsin \theta }{g}  \\ \\ \sf \implies R =vcos \theta \times T \\ \\ \sf \implies 200=vcos \theta \times 5  \\ \\ \sf \implies vcos \theta \times 5  = 200  \\ \\ \sf \implies vcos \theta =\frac{200}{5}  \\ \\ \sf \implies vcos \theta =40

\sf vcos \theta = v_{x} = 40 \ m/s

\vec{v} = 40 \hat{i} + 25 \hat{j}

We can calculate the magnitude of velocity as follows:

\sf \implies v = \sqrt{v_{y}^{2} + v_{x}^{2} } \\ \\ \sf \implies v = \sqrt{(25)^{2} +(40)^{2} } \\ \\ \sf \implies v = \sqrt{625+1600} \\ \\ \sf \implies v = \sqrt{2225} \\ \\ \sf \implies v = \sqrt{25 \times 89 } \\ \\ \sf \implies v =\sqrt{5^{2} \times 89 }  \\ \\ \sf \implies v = 5\sqrt{89} \ m/s

Now, direction of the velocity can be calculate as follows:

\sf \implies tan \theta = \frac{v_{y}}{v_{x}} \\ \\ \sf \implies tan \theta =\frac{25}{40}  \\ \\ \sf \implies tan \theta = \frac{5}{8} \times\frac{\cancel{5}}{\cancel{5}}  \\ \\ \sf \implies tan \theta = \frac{5}{8}  \\ \\ \sf \implies \theta = tan^{-1}(\frac{5}{8} )

Similar questions