Physics, asked by Aditya160906, 6 months ago

A ball is thrown upward with a velocity u such that it travelled a height more than the height of a
building h. If t1, and t2 are the two times in which the displacement of the ball was h. Find
a) t1 + t2
b) t1*t2​

Answers

Answered by Anonymous
14

Topic :- Motion in staright line

\maltese\:\underline{\sf AnsWer :}\:\maltese

A ball is thrown vertically upwards with Initial Velocity "u" and it is at certain height "h" (h < hₘₐₓ) for two times t₁ and t₂. [Acceleration due to gravity = -g ]

\dag\:\underline{\tt By \:  using \:  second \:  kinematical \:  equation \:  of \:  motion \:  we \:  get  : }

\longrightarrow\:\:\sf H = ut + \dfrac{1}{2} (-g)t^2 \\

\longrightarrow\:\:\sf H = ut + \dfrac{( - g)}{2} t^2 \\

\longrightarrow\:\:\sf H = ut  -  \dfrac{ g}{2} t^2 \\

\longrightarrow\:\:\sf \dfrac{ g}{2} t^2 - ut + H = 0 \\

Comparing the above equation with quadratic equation we have :

\longrightarrow\:\:\sf {ax}^{2}  + bx + c \\

Where,

  • a = g/2
  • b = -u
  • c = H

\dag\:\underline{\tt Sum  \: of  \: zeros : } \\

\longrightarrow\:\:\sf t_1 + t_2 = \dfrac{-b}{a} \\

\longrightarrow\:\:\sf t_1 + t_2 = \dfrac{ - (-u)}{  \dfrac{g}{2}  } \\

\longrightarrow\:\:\sf t_1 + t_2 = \dfrac{ u}{  \dfrac{g}{2}  } \\

\longrightarrow\:\: \underline{ \boxed{\sf t_1 + t_2 = \dfrac{ 2u}{g}}} \\

\dag\:\underline{\tt Product  \: of  \: zeros : } \\

\longrightarrow\:\:\sf t_1.t_2 = \dfrac{c}{a} \\

\longrightarrow\:\:\sf t_1.t_2 = \dfrac{H}{ \dfrac{g}{2} } \\

\longrightarrow\:\: \underline{ \boxed{\sf t_1.t_2 = \dfrac{2H}{ g }}}

Similar questions