Physics, asked by aman843464, 10 months ago

A ball is thrown vertically upward from a height of

40 m and hits the ground with a speed that is three

times its initial speed. What is the time taken (in

sec) for the fall?​

Answers

Answered by yogitabgh
4

Answer:

u=x

v=-3x

s=-40m

a=-g=-10m/S2

t=?

using the equation V2-U2=2as

9x2-x2=2*10*40

8x2=800

X=10

Now V=U+at

-3x=x-10t

10t= 40

t =4 sec

Answered by Anonymous
5

Answer:

\sf{The \ the \ time \ taken \ for \ fall}

\sf{is \ 3.03 \ s}

Given:

\sf{v_{2}=3\times \ u_{1}}

\sf{Ball \ is \ thrown \ upward \ from \ height \ of \ 40 \ m}

To find:

  • \sf{Time \ taken \ for \ the \ fall.}

Solution:

\sf{Let \ initial \ velocity \ of \ ball \ while \ throwing}

\sf{be \ u_{1}}

\sf{For \ upward \ direction \ final \ velocity \ v_{1}=0}

\sf{According \ to \ the \ third \ equation \ of \ motion}

\sf{v_{1}^{2}=u_{1}^{2}+2as}

\sf{\therefore{s=\dfrac{-u_{1}^{2}}{2(-9.8)}}}

\sf{\therefore{s=\dfrac{u_{1}^{2}}{19.6}}}

\sf{\therefore{Total \ height=40+\dfrac{u_{1}^{2}}{19.6}}}

\sf{For \ downward \ motion}

\sf{v_{2}=3u_{1}}

\sf{u_{2}=0}

\sf{According \ to \ third \ equation \ of \ motion}

\sf{(3u_{1})^{2}=0+2(9.8)(40+\dfrac{u_{1}^{2}}{19.6})}

\sf{\therefore{9u_{1}^{2}=19.6(40+\dfrac{u_{1}^{2}}{19.6})}}

\sf{\therefore{9u_{1}^{2}=784+u_{1}^{2}}}

\sf{\therefore{8u_{1}^{2}=784}}

\sf{\therefore{u_{1}^{2}=\dfrac{784}{8}}}

\sf{\therefore{u_{1}^{2}=98}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\leadsto{u_{1}=9.9 \ m \ s^{-1}}}

\sf{But, \ v_{2}=3u_{1}}

\sf{\therefore{v_{2}=3\times9.9}}

\sf{\therefore{v_{2}=29.7 \ m \ s^{-1}}}

\sf{According \ to \ the \ first \ equation \ of \ motion}

\sf{v_{2}=u_{2}+at}

\sf{\therefore{29.7=0+(9.8)t}}

\sf{\therefore{t=\dfrac{29.7}{9.8}}}

\sf{\therefore{t=3.03 \ s \ (approx)}}

\sf\purple{\tt{\therefore{The \ the \ time \ taken \ for \ fall}}}

\sf\purple{\tt{is \ 3.03 \ s}}

__________________________

\sf\blue{Extra \ information}

\sf{Equations \ of \ motion}

\sf{1. \ v=u+at}

\sf{2. \ s=ut+\dfrac{1}{2}\times \ at^{2}}

\sf{3. \ v^{2}=u^{2}+2as}


Anonymous: awesome :)
Similar questions