Math, asked by 01TheUnknown01, 1 month ago

A ball is thrown vertically upwards from the top of a tower with a velocity of 20m/s. the ball strikes the ground after 5 seconds of it's throwing.what is the height of the tower and the velocity of the ball while striking the earth?(g=9.8m/s²


ɴᴏᴛᴇ :

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ɴᴏ ꜱᴄʀᴇᴇɴꜱʜᴏᴛꜱ, ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ

Good Luck !! ​

Answers

Answered by ItzAshi
425

Step-by-step explanation:

Given :

  • Initial velocity (u) = 20m/s
  • Distance (s) = ?
  • Time (t) = ?
  • Gravitational acceleration (a) = 9.8 m/s²

To find :

  • Height of the tower
  • Velocity of ball while striking the Earth - final velocity (v)

Formulae being use :

{\bold{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}{\bold{\underline{\boxed{\rm{S = -ut  \: +  \: \frac{1}{2}at²}}}}} \\  \\

{\bold{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}{\bold{\underline{\boxed{\rm{v = u  \: +  \: at}}}}} \\  \\

Where,

S = distance covered

u = initial velocity

a = acceleration due to gravity

t = time

v = final velocity

Solution :

Using the law of motion to calculate height of the tower

{\bold{\sf{:  \: ⟹ \:  \:  \:  \:  \: S = -ut  \: + \:  \frac{1}{2}at²}}} \\  \\

Substituting the values of initial velocity, time and acceleration due to gravity in above mentioned equation

{\bold{\sf{:  \: ⟹ \:  \:  \:  \:  \:  \: S = \:  -20  \: × \:  (5) \:  +  \: \frac{1}{2}  \: ×  \: 9.8  \: ×  \: (5)²}}} \\  \\

{\bold{\sf{:  \: ⟹ \:  \:  \:  \:  \: S \:  = \:  -100  \: +  \: 1  \: × \:  4.9 \:  ×  \: 25}}} \\  \\

{\bold{: \: ⟹ \:  \:  \:  \:  \:  \: }}{\bold{\boxed{\boxed{\rm{\orange{S = 22.5 \:  m}}}}}} \\  \\

{\bold{:  \: ⟹ \:  \:  \:  \:  \:  \: }}{\bold{\rm{\pink{ Height  \: of  \: the  \: tower \:  is  \: 22.5 \: m }}}} \\  \\

Again we have to use law of motion to calculate final velocity

{\bold{\sf{: \:  ⟹ \:  \:  \:  \:  \:  \: v  \: = \:  u  \: + \:  at}}} \\  \\

Substituting the values of initial velocity, time and acceleration due to gravity in above mentioned equation

{\bold{\sf{:  \: ⟹ \:  \:  \:  \:  \:  \: v  \: =  \: -20  \: +  \: 9.8 \:  × \:  5}}} \\  \\

{\bold{: \: ⟹ \:  \:  \:  \:  \:  \: }}{\bold{\boxed{\boxed{\rm{\orange{v = 29 \:  m/s}}}}}}

{\bold{:  \: ⟹ \:  \:  \:  \:  \:  \: }}{\bold{\rm{\pink{Velocity  \: of \:  ball  \: while  \: striking  \: the \:  earth \:  is \:  29 m/s }}}} \\  \\

Additional Information :

{\bold{\rm{⟼ \:  \:  \:  \:  \:  \:  v  \: =  \: u  \: + \:  at}}} \\  \\

{\bold{\rm{⟼  \:  \:  \:  \:  \:  \: s  \: =  \: ut  \: +  \: \frac{1}{2}at²}}} \\  \\

{\bold{\rm{⟼  \:  \:  \:  \:  \:  \: v² \:  =  \: u²  \: + \:  2as}}} \\  \\

{\bold{\rm{⟼ \:  \:  \:  \:  \:  \:  s({t}^{th})  \: = \:  u²  \: + \:  \frac{1}{2} \: a(2t  \: -  \: 1)}}} \\

Answered by Anonymous
39

By using laws of motion we get

\bold{s=−ut+ \frac{1}{2} at {}^{2}}

u=20 m/s

By substituting the time and initial velocity in above equation and acceleration due ot gravity as 9.8 m/s^2

 \small\bold{s=−20×(5)+21×9.8×(5) {}^{2} }

s=22.5m

Again by using

v=u+at

The velocity of the body is calculated as

v=−20+9.8×5

v=28 m/sec

Then velocity of the ball while stinking is 29 m/sec

Similar questions