Physics, asked by PrayagJain2, 10 months ago

A ball is thrown vertically upwards with a velocity of 20 ms -1 from the top of a multistoreyed buildings. The height of the point from where the ball is thrown is 25 m from the ground. (i) How high will the ball irse ? (ii) How long will it be before the ball hits the ground ? (iii) Trace the trajectory of this ball. Please answer this quickly if you want to be marked as the BRAINLIEST!

Answers

Answered by BrainlyConqueror0901
75

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Maximum\:height=45\:m}}}

\green{\tt{\therefore{Total\:time\:taken=5\:sec}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Initial \: velocity = 20 \: m/s \\  \\   \tt: \implies Height \: of \: building = 25 \: m \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Maximum \: height =?  \\  \\ \tt:  \implies Time \: taken  \: to \: reach \: ground =?

• According to given question :

 \tt \circ \: Final \: velocity = 0 \: m/s \\  \\  \bold{As \: we \: know \: that} \\  \tt: \implies  {v}^{2}  =  {u}^{2}  + 2as \\  \\ \tt: \implies  {0}^{2}  =  {20}^{2}    + 2 \times ( - 10) \times s \\  \\ \tt: \implies  - 400 =  - 20 \times s \\  \\ \tt: \implies s =  \frac{ - 400}{ - 20}  \\  \\  \green{\tt: \implies s = 20 \: m} \\  \\    \green{\tt \therefore Maximum \: height \:attained\:  by \: ball \: is \: 45 \: m} \\  \\  \bold{As \: we \: know \: that}  \\  \tt: \implies v = u + at \\  \\ \tt: \implies 0 = 20 + ( - 10) \times t_{1}\\  \\ \tt: \implies  - 20 =  - 10 \times  t_{1}\\  \\  \green{\tt: \implies  t_{1}  = 2 \: sec} \\   \\  \tt  \circ \: Initial \: velocity = 0 \: m/s \\ \\  \bold{As \: we \: know \: that} \\  \tt: \implies  s_{total} = ut +   \frac{1}{2} a {t}^{2}  \\  \\  \tt:  \implies 45 = 0 \times t +  \frac{1}{2}  \times 10 \times  { t_{2} }^{2}  \\  \\ \tt:  \implies  \frac{90}{10}  =  { t_{2}}^{2}  \\  \\  \green{\tt:  \implies  t_{2} = 3 \: sec} \\  \\   \green{\tt \therefore Total \: time \: taken \: to \: reach \: ground \: is \: 5 \: sec}

Answered by amansharma264
43

\bold {\green{answer}}\\\\  \bold {\orange{\therefore{ \blue{total \:  \: time \:  \: taken \:  =  \: 5sec}}}} \\\\  \blue{maximum \:  \: height \:  \:  =  \: 45 \: m} \\  \\  \large{\bold {\green{ \underline{ \underline{step - by - step - explanation}}}}}  \\\\ \bold{\green{given}} \\\\  \implies{\text{initial \:   velocity \:  = 20ms}} \\\\  \implies{\text{height \: of \: building = 25m}}  \\\\ \large{ \bold \pink{find}} \\\\ 1) \implies{maximum \: height} \\\\  2)\implies{time \: taken \: to \: reach \: the \: ball \: hits \: the \: ground} \\\\  3)\implies{trace \: \:  the \:  \: trajectory \:  \: of \:  \: ball} \\\\  \implies \bold{according \: \:  to \: \:  question} \\\\  \implies \bold \pink{final \:  \: velocity \:  = 0} \\\\  \implies \bold{time \:  \: to \:  \: reached \:  \: maximum \:  \: height \:  \: obtained \:  \: from} \\\\   \implies \bold \green{ \boxed{v \:  = u \:  + at}} \\\\  \implies \bold{ \boxed{a \:  =  - g}} \\\\  \implies \bold{0 \:  =20 + ( - 10)(t) } \implies{t = 2sec} \\\\  \implies{maximum \:  \: height} \\\\  \implies \bold \green{ \boxed{s = ut +  \frac{1}{2}a {t}^{2}  }} \\\\  \implies{s \:  = 20(2) +  \frac{1}{2}( - 10) ({2})^{2}  } \\\\  \implies{s \:  = 40 - 20 = 20m} \\\\  \implies{total \:  \: height \:  = 20 + 25 = 45m} \\\\  \implies \bold \orange \therefore{total \:  \: distance \:  \: from \:  \:  maximum \:  \: height \:  = 45m} \\\\  \implies{s \:  = ut \:  +  \frac{1}{2}at {}^{2}  } \\\\  \implies{45 = 0 +  \frac{1}{2}( - 10)(T1){}^{2}  } \\\\ \implies{45 = 0 + ( - 5)(T1){}^{2} } \\  \implies{9 = (T1) {}^{2} } \\\\  \implies{T1 =3sec} \\\\   \implies \bold \therefore \green{total \:  \: time \:  \:  =  \: 2 + 3 \:  = 5sec}

Similar questions