Physics, asked by itzmanu48, 9 months ago

A ball is thrown vertically upwards with a velocity of 49 m/s. Calculate (1) The maximum height to which it rises. (2) The total time it takes to return to the surface of the earth.

Answers

Answered by ThakurRajSingh24
8

\bold{\underline{GIVEN :}}

•Initial velocity of the ball (u) = 49m/s.

•The velocity of the ball at maximum height (v) = 0.

•g = 9.8m/s²

\bold{\underline{SOLUTION :}}

Let us considered the time taken is t to reach the maximum height H.

Consider a formula,

2gH = v² – u²

2 × (- 9.8) × H = 0 – (49)²

– 19.6 H = – 2401

{\boxed{\red{\tt{H = 122.5 m}}}}

Now consider a formula,

v = u + g × t

0 = 49 + (- 9.8) × t

– 49 = – 9.8t

{\boxed{\red{\tt{t = 5 sec}}}}

(1) The maximum height to ball rises = 122.5 m

(2) The total time ball takes to return to the surface of the earth = 5 + 5 = 10 sec.

Answered by ZzyetozWolFF
3

Answer:

  • 122.5m

  • 10 sec

Explanation:

Initial velocity , u = 49 m/s

Final velocity , v = 0m/s

Maximum height to which it rises acceleration due to gravity = 9.8m/s²

An object is moving upwards , a = -9

We know that ,

v² - u² = 2 as

v² - u² = 2gh

 \sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: h =  \dfrac{ {v}^{2} -  {u}^{2}  }{ - 2g}

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \dfrac{ {49}^{2}  -  {0}^{2} }{2 \times 9.8}

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \dfrac{2401}{19.6}

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:112.5m

ii) Total time it takes to return to the surface of the earth.

from B to A:-

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:s = ut \dfrac{ - 1}{2}  {gt}^{2}

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \: 122.5 = 49t -  \dfrac{ - 1}{2}  \times   {9.8t}^{2}

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \: 49t  \bigg(1 -  \dfrac{t}{10}  \bigg)

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:49t \bigg( \dfrac{10 - t}{10}  \bigg)

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:1225 = 49t(10 - t)

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \dfrac{1125}{49}  = t(10 - t)

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:25 = 10t -  {t}^{2}

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  -  {t}^{2}   + 10t - 25 = 0

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: {t}^{2}   - 10t + 25 = 0

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \: t = 5sec

From A to B

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:s = ut +  \frac{1}{2} {gt}^{2}

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:122.5 = (0)t +  \frac{1}{2}  \times 9.8 {t}^{2}

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:t =  \dfrac{1225.5}{4.9}  = 25

\sf \:  \implies \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:t =  \sqrt{25}  =  \pm \: 5

t = 5 sec

Total time = 5 + 5 = 10 sec

Similar questions